Ay

Wi ndoWs Vistar

Windows Vista Application Development
Requirements for User Account Control
Compatibility

Microsoft Corporation
Published: September 2006
Updated: February 2007

Abstract

This document is intended to assist application developers with designing Windows Vista
capable applications that are User Account Control compliant. Detailed steps about the
design process are included, along with code samples, requirements, and best practices.
This paper also details the technical updates and changes to the user experience in
Windows Vista.

Microsoft

The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any
information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN
THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced, stored in
or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Microsoft, the furnishing of this document
does not give you any license to these patents, trademarks, copyrights, or other
intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain
names, e-mail addresses, logos, people, places and events depicted herein are fictitious,
and no association with any real company, organization, product, domain hame, email
address, logo, person, place or event is intended or should be inferred.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, ClickOnce, IntelliMirror, Microsoft .NET, Visual Studio, Windows
Installer, Windows NT, Windows Vista, and Windows XP are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks
of their respective owners.

Contents

Windows Vista Application Development Requirements for User Account Control

(070 0 a1 o =11 o1 1Y PSP 7
Why User ACCOUNt CONIOI?o e e e e e 7
WiINAOWS ViSta UPAALEScvuiiiiiiiii i e e e e e e e e e e e aaan s 9
UAC is Enabled by Defaultiiiiiiiiiii i 9

All Subsequent User Accounts are Created as Standard Userscccoeeeeeeeveennnns 9
Elevation Prompts are Displayed on the Secure Desktop by Default.................... 10
Elevation Prompts for Background Applications are Minimized to the Taskbar10
Elevations are blocked in the User's Logon Pathccceevviiiiiiiii e, 10
Built-in Administrator Account is Disabled by Default on New Installations 10
User Account Control and RemOote SCENANOSuiiieeiiieiiiiiiiiiee e 11
New Default Access Control List (ACL) Settingscovvivviviiiiieiiiiiieeeiie e 12
New UAC Security Settings and Security Setting Name Changes........................ 14
HOW UAC WOTKS ...ttt ettt e e e e e et e e e bbb e e 14
New Technologies for WINAOWS ViStacoviieieiiiiiiiiiiiiiie e eee e e e e e eeeeeaes 14
ACHIVEX INSTAIIEr SEIVICEo 14
INStaller DELECHIONceeiieeeie et e e e e e e e 14
Patching Applications in @ UAC ENVIFONMENTt........cciiiiieiieiieiiiiiiie e ee e 16
Security Center INTEGratioNue e iiie e e e e e e e e e e e e e e e eeaaeeena 16
User Interface Privilege 1S0lationcc.ouuiiiiiiiiiici e 16
VIFTUBIIZALION ...t e et e bbb e e e e e e eeeanaes 18
ACCESS TOKEN ChaNQES.....uuiiiiiiiie et e e e e e aaans 22
UAC AFCRILECIUN ...ttt e e e e e e e e e 24
Standard User Launch Path ... 26
Elevated Launch Path ... 26
Will UAC Affect your APPlICAtION?ccoiiiiiieiiiee e e e e 26
Why Do | Need to Remove My Application’s Administrative Dependencies? 27
Reducing Your Application's Total Cost of Ownership...........cccccevieiiieeeieieeiiiiiennnn, 27
Secure DY DefauUlt...........oi i 28
How Do | Determine If My Application Has Administrative Dependencies?.............. 30
What Are the Requirements If | Have a Legitimate Administrator Application?......... 30
Designing Applications for WIiNAOWS ViStal..........ccovviieiiiiiiiiiiin e eeeeeeaens 31
Step One: Test Your Application for Windows Vista Application Compatibility 31

Step Two: Classify Your Application as a Standard User, Administrator, or Mixed
L0 LYY A o] o] [Tox- 1o} o PP 32

Questions to Help Classify Your Applicationcccceevvevveiiiiiis e, 33

Analyzing the Answers to Classify Your Application............ccccooeviiviiiiiiieiiiiineeeenn, 34
Verify the Application or Control Panel Works with UAC:cocoviiiiviviiiiineeeenn, 35
Step Three: Redesign Your Application's Functionality for UAC Compatibility 35
Windows Vista Application Run-time Requirements............cccevvvvvvvveiiiineeeeeeenennnns 35
Step Four: Redesign Your Application's User Interface for UAC Compatibility......... 43
Impact of UAC on the Windows User EXPeri€NCecccoeeveeeeeieeeiviiniiiineeeeeeneennnns 43
Goals of the UAC USEr EXPEIENCE......ccuuuieiieii e it et et s e et e e st eeaaaaneaaes 44
Loy 2= Ao o I = 0] 2] | SO 45
User EXpPerience ProCeSS FIOW.........iiiiiii i 47
Elevation ENtry POINTSiiiiiiii e e e e e e 47
User Interface IMplementation...........c.oovvuuiiiiiiiiii e 51
When to Add the Shield Icon to Your Application's User Interface........................ 55
Key Decisions for Designing Administrator-Only Applicationsccccevvvvvvnnnnn. 58
Step Five: Redesign Your Application's Installercccvvvvvviiiiiiiii e, 61
Step Six: Create and Embed an Application Manifest with Your Application 63
Application Manifest SChemMaccuuiiiiiiiiii e 63
How to Create an Embedded an Application Manifest with Microsoft Visual Studio®
.. 68
Building Application Manifests with Visual Studio® 2005 for Windows Vista Only
PN o] o1 1o = 4o 1 PP 70
Building and Embedding an Application Manifest with Microsoft Visual Studio®
2005 for Windows XP and Windows Vista Applicationscccccevvvvveiiiennnenn. 70
Step Seven: Test YOUr APPlICatioN........occooiiiiviieie e 72
Step Eight: Authenticode Sign Your Applicationcccovvvvvieiicii i, 72
Example Signing ProCEAUIEcoiuiiii it e e e e eaaa s 73
Step Nine: Participate in the Windows Vista Logo Program.........ccccccoeveeevviveviennnnnnn, 75
Deploying and Patching Applications for Standard USerscccceevvvvviiiiiineeeeeennnennns 75
Deploying to a SiNgle COMPULETccuuiiiiieiiiiie et e e e aaa s 76
Deploying to all users in @ DOMaAINcooiiiiiiiiiiieiie e e 76
Patching Applications as a Standard User with Windows Installer 4.0 77
Windows Installer 4.0 Standard User Uninstall Behavior................cccovviiiiiiiininns 77
Launching an Un-Elevated Application from an Elevated Process..........cc..cccv...... 77
Troubleshooting COMMON ISSUESccoieiiiiiiieeiie e e e e e 78
ACtiVEX INSEAllAtION ISSUES ...t eeeeeens 78
RESOIULION ...ttt e et e e e e e e e e 78
ActiveX Documents DO NOt INSEAloeveiiiiiiiiiiiiii e 79
RESOIULION ... e e e et e et et e e e e e e e eeeaaeaaan s 79
Application, Framework, or Add-in REQUITEdccoeeiiiiiiiiiiiiiii e 79

[LETST0] U140 o [79

Administrative Permission is Required for Installation/Patching...........c...ccceevevvenn. 79

RESOIULION ... e e e et e ettt e e e e e eeeaananaa s 80
Per-User Application Settings LOCAIONScvivviiiiieeiiii e 80
Application Defaults to Saving in a Protected DireCtorycccoovevviiiiiieiiiieeeeiinnnnn, 82

RESOIULION ...ttt e e e e e e e e e e e 82

REFEIENCES ... ettt e e bbb 82
Virtualization RefEreNCE...........uuiiiiiiiiiiie e 82

File VIMUAIIZATIONueeii e 82

Registry VirtualiZation:ooviiiiiiiie e e e e 82

Y o]] L To%= 1 1 2PN 83
UAC Security Settings RefEreNCeoviiiiiiiii e 83

Configuring UAC SeCUItY SEINGScivvveiieeiii e 83

UAC SECUIMLY SEIINGS ..evvvieiiiiiiis e ee ettt e e e e e e e e et e e e aaaa s 84

Task Scheduler Code SAMPIEcoiiiie i 92

Windows Vista Application Development
Requirements for User Account Control
Compatibility

This document contains information to assist application developers with ensuring that
their applications are User Account Control (UAC) compatible. Sections in this paper
include:

» Why User Account Control? -- Details why UAC was developed.

» How UAC Works -- Details the UAC functionality.

« Will UAC Affect your Application? -- How to determine whether you will have to make
your application UAC compatible.

» Designing Applications for Windows Vista -- How to design your application to be
UAC compatible.

» Deploying and Patching Applications for Standard Users -- How to ensure that your
application can be deployed for standard users.

e Troubleshooting Common Issues -- Lists common development and installation
issues that arise in Microsoft .NET applications.

» References -- Includes a virtualization reference and a security settings reference.

Why User Account Control?

Application developers have consistently created Microsoft Windows® applications that
require excessive user rights and Windows privileges, often requiring that the executing
user be an administrator. As a result, few Windows users run with the least user rights
and Windows privileges required. Many enterprises, seeking to balance ease of
deployment and ease of use with security, have often resorted to deploying their
desktops as administrator due to standard user application compatibility problems.

The following list details additional reasons why it is difficult to run as a standard user on
pre-Microsoft Windows Vista™ computers:

1. Many Windows applications require that the logged on user be an administrator but
do not actually require administrator-level access. These applications perform a
variety of administrator access checks before being permitted to run, including:

a. Administrator access token checks.
b. "All access" access requests in system protected locations.

c. Data writing to protected locations, such as %ProgramFiles%, %Windir%, and
HKEY_LOCAL_MACHINE\Software.

2. Many Windows applications are not designed with the concept of least-privilege and
do not separate user and administrator functionality into two separate processes.

3. Windows® 2000 and Windows® XP create each new user accounts as
administrators by default; therefore, key Windows components, such as the Date and
Time and the Power Management control panels do not work well for a standard
user.

4. Windows 2000 and Windows XP administrators must create two separate user
accounts--one for administrative tasks and a standard user account to perform day-
to-day tasks. Therefore, users must log off of their standard user accounts and log
back in as an administrator or use Run As in order to perform any administrative
tasks.

With User Account Control (UAC), Microsoft is providing a technology to simplify
deploying standard user desktops in the enterprise and at home.

Building off of the Windows security architecture, as originally designed in the Microsoft
Windows NT® 3.1 operating system, the UAC team sought to implement a standard user
model that was both flexible and more secure. In previous versions of Windows, one
access token was created for an administrator during the logon process. The
administrator's access token includes most Windows privileges and most administrative
security identifiers (SIDs). This access token ensures that an administrator can install
applications, configure the operating system, and access any resource on the computer.

The UAC team took a drastically different approach to designing the access token
creation process in Windows Vista. When an administrator user logs on to a Windows
Vista computer, two access tokens are created: a filtered standard user access token and
a full administrator access token. Instead of launching the desktop (the Explorer.exe
process) with the administrator's full access token, the filtered standard user access
token is used. All child processes inherit from this initial launch of the desktop, which
helps limit Windows Vista's attack surface. By default, all users, including administrators,
log on to Windows Vista as standard users.

There is one exception to the preceding statement: Guests log onto the computer
with fewer user rights and Windows privileges than standard users.

When an administrator user attempts to perform an administrative task, such as installing
an application, UAC prompts the user to approve the action. When the administrator user
approves the action, the task is launched with the administrator's full administrator access
token. This is the default administrator prompt behavior, and it is configurable in the local

Security Policy Manager snap-in (secpol.msc) and with Group Policy (gpedit.msc).

An administrator account on a Windows Vista computer with UAC enabled is also
called an administrator account in Admin Approval Mode. Admin Approval Mode
identifies the default user experience for administrators in Windows Vista.

Each administrative elevation is also process specific, which prevents other processes
from using the access token without prompting the user for approval. As a result,
administrator users have more granular control on what applications install while greatly
impacting malicious software that expects the logged on user to be running with a full
administrator access token.

Standard users also have the opportunity to elevate within a task flow to perform
administrative tasks by using the UAC infrastructure. When a standard user attempts to
perform an administrative task, UAC prompts the user to enter valid credentials for an
administrator account. This is the default standard user prompt behavior, and it is
configurable in the local Security Policy Manager snap-in (secpol.msc) and with Group
Policy (gpedit.msc).

Windows Vista Updates

The following updates are reflective of the cumulative core changes in functionality that
have occurred in Windows Vista.

UAC is Enabled by Default

As a result, you might encounter some compatibility problems with different applications
that have not yet been updated for the Windows Vista UAC component. If an application
requires an administrator access token (this is indicative from an "access denied" error
being returned when you attempt to run the application), you can run the program as an
administrator by using the Run as administrator option on the context menu (right-click).

All Subsequent User Accounts are Created as Standar d Users

Both standard user accounts and administrator user accounts can take advantage of the
UAC enhanced security. On new installations, by default, the first user account created is

10

a local administrator account in Admin Approval Mode (UAC enabled). All subsequent
user accounts are then created as standard users.

Elevation Prompts are Displayed on the Secure Deskt op by Default

The consent and credential prompts are displayed on the secure desktop by default in
Windows Vista.

Elevation Prompts for Background Applications are M inimized to the
Taskbar

Background applications will automatically prompt the user for elevation on the taskbar,
rather than automatically switching to the secure desktop for elevation. The elevation
prompt will appear minimized on the taskbar and will blink to notify the user that an
application has requested elevation. An example of a background elevation occurs when
a user browses to a Web site and begins downloading an installation file. The user then
goes to check e-mail while the installation downloads in the background. Once the
download completes in the background and the install begins, the elevation is detected
as a background task rather than a foreground task. This detection prevents the
installation from abruptly stealing focus of the user's screen while the user is performing
another task--reading e-mail. This behavior creates a better user experience for the
elevation prompt. Information about how application developers can ensure that their
applications are not minimized to the taskbar when they request elevation is available
later in this document.

Elevations are blocked in the User's Logon Path

Applications that start when the user logs on and require elevation are now blocked in the
logon path. Without blocking applications from prompting for elevation in the user's log on
path, both standard users and administrators would have to respond to a User Account
Control dialog box on every log on. Windows Vista notifies the user if an application has
been blocked by placing an icon in the system tray. The user can then right-click this icon
to run applications that were blocked from prompting for elevation as the user logged on.
The user can also manage which startup applications are disabled or removed from this
list by double-clicking on the system tray icon.

Built-in Administrator Account is Disabled by Defau It on New
Installations

The built-in administrator account is disabled by default in Windows Vista. If Windows
Vista determines during an upgrade from Windows XP that the built-in administrator

11

account is the only active local administrator account, Windows Vista will leave the
account enabled and place the account in Admin Approval Mode (UAC enabled). In
addition, the built-in administrator account, by default, cannot log on to the computer in
safe mode. Please see the following sections for more information.

The built-in administrator account is created during setup with the user name
Administrator .

Non-Domain Joined

When there is at least one enabled local administrator account, safe mode will not allow
the disabled built-in administrator account to logon. Instead, any local administrator
account can be used to logon. If the last local administrator account is inadvertently
demoted, disabled, or deleted, then safe mode will allow the disabled built-in
administrator account to logon for disaster recovery.

Domain Joined

In all cases on a domain-joined computer, the disabled built-in administrator account
cannot logon in safe mode. A user account that is a member of the Domain Admins
group can log on to the computer to create a local administrator if none exists.

If a domain administrator account has never logged on before, then the computer
must be started in Safe Mode with Networking since Windows Vista will not
have cached the user's credentials.

Once the computer is disjoined from the domain, it will revert back to the non-
domain joined behavior previously described.

User Account Control and Remote Scenarios

When an administrator logs on to a Windows Vista computer remotely, through Remote
Desktop for instance, the user is logged on to the computer as a standard user by
default. Remote administration has been modified to be restrictive over a network. This
restriction helps prevent malicious software from performing application “loopbacks” if a
user is running with an administrator access token.

12

Local User Accounts

When a user with an administrator account in a Windows Vista computer's local Security
Accounts Manager (SAM) database remotely connects to a Windows Vista computer, the
user has no elevation potential on the remote computer and cannot perform
administrative tasks. If the user wants to administer the workstation with a SAM account,
the user must interactively logon to the computer that he/she wishes to administer.

Domain User Accounts

When a user with a domain user account logs on to a Windows Vista computer remotely,
and the user is a member of the Administrators group, the domain user will run with a
full administrator access token on the remote computer and UAC is disabled for the user
on the remote computer for that session.

New Default Access Control List (ACL) Settings

The ACLs on certain Windows directories have been changed to enable data sharing and
collaboration in data directories and outside of a user's protected directories. A user's
protected directory is the user's profile (e.g. C:\Users\Denise\Pictures\), while an example
of a data directory is location outside of the operating system partition on a data drive
(E.G. D:\Pictures\). Because the root directory, C in this instance, is protected by more
restrictive ACLs, users were previously unable to use data directories in earlier versions
of Windows Vista.

These ACL changes ensure that users can share and edit files without having to provide
approval to a User Account Control dialog box. Additionally, users can now make a folder
private. This change ensures that users can still easily maintain data confidentiality and
integrity on data drives. These private folders will still be readable by other administrators
if they elevate and should be used to keep data private from standard users.

The following table lists the default ACL settings on %systemroot% and on data drives in
Windows XP.

Windows XP %systemroot% and data drive ACL settings

User or Group Access Control Entry
BUILTIN\Administrators Full control
NT AUTHORITY\SYSTEM Full control

CREATOR OWNER Full control

13

User or Group

Access Control Entry

BUILTIN\Users

Read
Special access: FILE_APPEND_DATA
Special access: FILE_WRITE_DATA

Everyone

Read

The following table details the new Windows Vista data drive ACL settings for data drives

created with format.exe.

Windows Vista data drive ACL settings

User or Group

Access Control Entry

BUILTIN\Administrators Full control
NT AUTHORITY\SYSTEM Full control
NT AUTHORITY\Authenticated Users Modify

BUILTIN\Users

Read and execute

Generic read, generic execute

The following table details the new Windows Vista operating system root

(Yosystemroot%) ACL settings.

Windows Vista %systemroot% ACL settings

User or Group

Access Control Entry

BUILTIN\Administrators

Full control

NT AUTHORITY\SYSTEM

Full control

BUILTIN\Users

Read and execute

NT AUTHORITY\Authenticated Users

Modify

Append data

Mandatory Label\High Mandatory Level

No write

14

New UAC Security Settings and Security Setting Name Changes

The new security settings and security setting name updates are detailed in the
Reference section of this document.

How UAC Works

This section describes the architectural and functional components of UAC for application
developers.

New Technologies for Windows Vista

The following sections detail new technologies for Windows Vista, including the ActiveX®
Installer Service, installer detection, standard user patching with Windows Installer 4.0,
Security Center integration, User Interface Privilege Isolation, and virtualization.

ActiveX Installer Service

The ActiveX® Installer Service enables enterprises to delegate ActiveX control
installation for standard users. This service ensures that routine business tasks are not
impeded by failed ActiveX control installations and updates. Windows Vista also includes
Group Policy settings that enable IT professionals to define Host URLs from which
standard users can install ActiveX controls. The ActiveX Installer Service consists of a
Windows service, a Group Policy administrative template, and some changes in Internet
Explorer. The ActiveX Installer Service is an optional component, and will only be
enabled on client computers where it is installed.

Installer Detection

Installation programs are applications designed to deploy software, and most write to
system directories and registry keys. These protected system locations are typically
writeable only by administrator users; this restriction means that standard users do not
have sufficient access to install most programs. Windows Vista heuristically detects
installation programs and requests administrator credentials or administrator approval in
order to run with access privileges. Windows Vista also heuristically detects updater and
un-installation programs. A design goal of UAC is to prevent installations from being
executed without the user's knowledge and explicit consent since installations write to
protected areas of the file system and registry.

@ Important

When developing new installation programs, much like developing programs for
Windows Vista, be sure to embed an application manifest with an appropriate
requestedExecutionLevel element. See the Step Six: Create and Embed an
Application Manifest with Your Application section for more information. When
the requestedExecutionLevel is present in the embedded application manifest, it
overrides Installer Detection.

Installer Detection only applies to:

1. 32-bit executables

2. Applications without a requestedExecutionLevel

3. Interactive processes running as a standard user with UAC enabled

Before a 32-bit process is created, the following attributes are checked to determine
whether it is an installer:

Ensure that you thoroughly review the entirety of this document, including the Step Six:

Filename includes keywords like "install,” "setup," "update," etc.

Keywords in the following Versioning Resource fields: Vendor, Company Name,

15

Product Name, File Description, Original Filename, Internal Name, and Export Name.

Keywords in the side-by-side application manifest embedded in the executable.
Keywords in specific StringTable entries linked in the executable.

Key attributes in the resource file data linked in the executable.

Targeted sequences of bytes within the executable.

Note

The keywords and sequences of bytes were derived from common
characteristics observed from various installer technologies.

Create and Embed an Application Manifest with Your Application section.

The User Account Control: Detect application installati ons and prompt for
elevation setting must be enabled for installer detection to detect installation
programs. This setting is enabled by default and can be configured with the
Security Policy Manager snap-in (secpol.msc) or with Group Policy (gpedit.msc).

General information and an overview of the Microsoft Windows Installer can be found at
MSDN (http://go.microsoft.com/fwlink/?Linkld=30197).

16

Patching Applications in a UAC Environment

Microsoft Windows Installer 4.0 was designed with UAC in mind in order to make
application installations and patching easier. With the introduction of Windows Installer
4.0, patches can be applied to applications without reinstalling a newer version of the
application. This method is ideal when an application is deployed in a per-computer
install and patches need to be deployed by a user without requiring an administrator
access token. For information about how to create and apply patches and updates to
applications, see MSDN (http://go.microsoft.com/fwlink/?Linkld=71492).

Security Center Integration

When UAC is disabled on a Windows Vista computer, the Security Center creates an
alert and prompts the user to re-enable UAC. Security Center displays this alert once the
computer has been restarted after the UAC setting change.

User Interface Privilege Isolation

User Interface Privilege Isolation (UIPI) is one of the mechanisms that helps isolate
processes running as a full administrator from processes running as an account lower
than an administrator on the same interactive desktop. UIPI is specific to the windowing
and graphics subsystem, known as USER, that supports windows and user interface
controls. UIPI prevents a lower privilege application from using Windows messages to
send input from one process to a higher privilege process. Sending input from one
process to another allows a process to inject input into another process without the user
providing keyboard or mouse actions.

Windows Vista implements UIPI by defining a set of user interface privilege levels in a
hierarchical fashion. The nature of the levels is such that higher privilege levels can send
window messages to applications running at lower levels. However, lower levels cannot
send window messages to application windows running at higher levels.

The user interface privilege level is at the process level. When a process is initialized, the
User subsystem calls into the security subsystem to determine the desktop integrity level
assigned in the process’s security access token. The desktop integrity level is set by the
security subsystem when the process is created and does not change. Therefore, the
user interface privilege level is also set by the User subsystem when the process is
created and does not change.

All applications run by a standard user have the same user interface privilege level. UIPI
does not interfere or change the behavior of window messaging between applications at
the same privilege level. UIPI comes into effect for a user who is a member of the
administrators group and may be running applications as a standard user (sometimes

17

referred to as a process with a filtered access token) and also processes running with a
full administrator access token on the same desktop. UIPI prevents lower privilege
processes from accessing higher privilege processes by blocking the behavior listed
below.

A lower privilege process cannot:
« Perform a window handle validation of a higher privilege process.

» SendMessage or PostMessage to a higher privilege application window. These
application programming interfaces (APIs) return success but silently drop the
window message.

» Use thread hooks to attach to a higher privilege process.
» Use Journal hooks to monitor a higher privilege process.
e Perform dynamic link-library (DLL) injection to a higher privilege process.

With UIPI enabled, the following shared USER resources are still shared between
processes at different privilege levels:

» Desktop window, which controls the screen surface
» Desktop heap read-only shared memory

* Global atom table

» Clipboard

Painting to the screen is another action that is not blocked by UIPI. Painting to the screen
refers to the process of using the Paint method to display content on an external output—
a monitor, for example. The USER/graphics device interface (GDI) model does not allow
control over painting surfaces; therefore, it is possible for a lower privilege application to
paint over the surface region of a higher privilege application window.

Because the Windows Shell (the Explorer.exe process) is running as a standard
user process, any other process running as standard user can still send the
Windows Shell keystrokes. This is the primary reason why an administrator
account in Admin Approval Mode is prompted for elevation consent when the
user initiates an administrative action, such as double-clicking on a setup file or
clicking on a button marked with an elevation shield icon.

18

Virtualization

@ Important

Virtualization is implemented to improve application compatibility problems for
applications running as a standard user on Windows Vista. Developers must not
rely on virtualization being present in subsequent versions of Windows.

Prior to Windows Vista, many applications were typically run by administrators. As a
result, applications could freely read and write system files and registry keys. If standard
users ran these applications, they would fail due to insufficient access. Windows Vista
improves application compatibility for standard users by redirecting writes (and
subsequent file or registry operations) to a per-user location within the user’s profile. For
example, if an application attempts to write to C:\Program Files\Contoso\Settings.ini, and
the user does not have permissions to write to that directory, the write will get redirected
to C:\Users\Username\AppData\Local\VirtualStore\Program Files\contoso\settings.ini. For
the registry, if an application attempts to write to
HKEY_LOCAL_MACHINE\Software\Contoso\ it will automatically get redirected to
HKEY_CURRENT_USER\Software\Classes\VirtualStore\MACHINE\Software\Contoso or
HKEY_USERS\UserSID_Classes\VirtualStore\Machine\Software\Contoso.

The following figure details the virtualization process in Windows Vista. In this example,
Denise is an administrator in Admin Approval Mode and Brian is a standard user.
Virtualization is comprised of two components: file virtualization and registry virtualization.

Virtualization process

- File System
%ngramFle:;%

Virtual File Store
t Ynlocalappdataotvirtualstore’,

_I

Apphcatmn
Virtual Registry Store
| HECUWSoftware\Classes\VirtualStore

HKLM"-.Snftware)
| Registry

19

@ Important

While developing Windows Vista programs, to reduce the complexity of
virtualized files and registry keys, be sure to embed an application manifest with
an appropriate requestedExecutionLevel in order to turn off file and registry
virtualization.

Virtualization is only enabled for the following:

e 32-bit interactive processes

* Administrator writeable file/folder and registry keys
Virtualization is disabled for the following:

* 64-bit processes

* Non-interactive processes

» Processes that impersonate

* Kernel mode callers

» Executables that have a requestedExecutionLevel
Virtualization and roaming:

» Virtualization files/folders and registry keys do not roam

» Associated with global objects that do not roam

File Virtualization

File virtualization addresses the situation where an application relies on the ability to
store a file, such as a configuration file, in a system location typically writeable only by
administrators. Running programs as a standard user in this situation might result in
program failures due to insufficient levels of access.

When an application writes to a system location only writeable by administrators,
Windows then writes all subsequent file operations to a user-specific path under the
Virtual Store directory, which is located at %LOCALAPPDATA%\VirtualStore. Later,
when the application reads back this file, the computer will provide the one in the Virtual
Store. Because the Windows security infrastructure processes the virtualization without
the application’s assistance, the application believes it was able to successfully read and
write directly to Program Files. The transparency of file virtualization enables applications
to perceive that they are writing and reading from the protected resource, when in fact
they are accessing the virtualized version.

20

When you enumerate resources in folders and in the registry, Windows Vista will
merge global file/folder and registry keys into a single list. In this merged view,
the global (protected) resource is listed along with the virtualized resource.

@ Important

The virtual copy will always be present to the application first. For example,
config.ini is available in \Program Files\ApplicationName\config.ini and
%LOCALAPPDATA%\VirtualStore\config.ini, and the config.ini in the virtual store
will always be the one read, even if \Program Files\ApplicationName\config.ini is
updated.

The following figure details how global and merged views for virtualized resources are
displayed for different users.

Virtualized resources and views

Global View) Merged View
- - Virtual Store - -
! o e f
Application Seltings.cfg Application

\
Eettmgsm‘vlrtual Store) Settings.cfg
f v\
\
Settings.cfg

App.data Brian 1".\ App.data

The following is an example of the file virtualization process:

Syed Abbas, a sales representative at Woodgrove Bank, is running as a standard user
on a computer that he shares with other sales representatives. Syed often uses a
spreadsheet application to update and save a file under the Program Files\SalesV1\
directory: \Program Files\SalesVV1\SalesData.txt. Although Program Files\SalesV1\ is
protected, the file will be saved successfully from the spreadsheet application's point-of-
view because of Windows Vista file virtualization. To achieve this, the file write is
redirected to Users\Username\AppData\Virtual Store\Program
Files\SalesV1\SalesData.txt. When Syed opens Windows Explorer and browses to the
Program Files directory, he will see the global view of the SalesData.txt file.

21

For Syed to discover his virtualized files, he must navigate to the virtual store
with the Compatibility files button on the Explorer toolbar.

However, after Stuart Munson, another sales representative, logs on to the same
workstation Syed uses, he will NOT see the file SalesData.txt in the Program
Files\SalesV1\ directory. If a different user uses the computer and writes to the \Program
files\SalesV1\SalesData.txt file, that write will also be virtualized to that user's virtual
store. The files Syed updates and saves will remain independent of the other virtualized
files on the computer.

Registry Virtualization

Registry virtualization is similar to file virtualization but applies to registry keys under
HKEY_LOCAL_MACHINE\SOFTWARE. This feature permits applications that rely on the
ability to store configuration information in HKEY_LOCAL_MACHINE\SOFTWARE to
continue to when they are run under a standard user account. The keys and data are
redirected to HKEY_CLASSES ROOT\VirtualStore\SOFTWARE. As in the file
virtualization case, each user has a virtualized copy of any values that an application has
stored in HKEY_LOCAL_MACHINE.

Registry Virtualization Details
e Can be turned on/off on individual keys in the Software hive

* New FLAGS option in reg.exe for key level virtualization control: Allows recursive
enable/disable of virtualization and control of “open access right policy”

» ZwQueryKey: Programmatically query the virtualization flags for a key.
e Virtualization happens on top of WoW64 redirection

» Enabled both in the 64-bit and 32-bit registry views:
HKEY_USERS\UserSID_Classes\VirtualStore\Machine\Software and
HKEY_USERS\UserSID_Classes\VirtualStore\Machine\Software\SY SWOW 3264

* Most pre-Windows Vista 32-bit apps will use the 32-bit view

Virtualization Recommendations

Virtualization is intended only to assist in application compatibility with existing programs.
Applications designed for Windows Vista should NOT perform writes to sensitive system
areas, nor should they rely on virtualization to provide redress for incorrect application
behavior. When updating existing code to run on Windows Vista, developers should
ensure that, during run-time, applications only store data in per-user locations or in

22

computer locations within %allusersprofile% (CSIDL_COMMON_APPDATA) that have
access control list (ACL) settings properly set.

@ Important

Microsoft intends to remove virtualization from future versions of the Windows
operating system as more applications are migrated to Windows Vista. For
example, virtualization is disabled on 64-bit applications.

The following list details other file and registry virtualization recommendations:

» Add an application manifest with an appropriate requestedExecutionLevel for your
interactive applications. This will turn virtualization off for the manifested application.

» Do not use the registry as an inter-process communication mechanism. Services and
user applications will have different views of the registry key.

e Test your application on Windows Vista: Ensure that processes running as standard
user do not write to global namespaces like %systemroot%.

» For filter driver developers: Check your altitude range
(http://go.microsoft.com/fwlink/?Linkld=71503). See File System Filters and fltmc.exe
(http://go.microsoft.com/fwlink/?Linkld=71504). These must be higher than FSFilter
virtualization.

* Remember that virtualized resources are per-user copies of global resources.

Access Token Changes

When a user logs on to a Windows Vista computer, Windows looks at the administrative
Windows privileges and Relative IDs (RIDs) that the user account possesses to
determine if the user should receive two access tokens (a filtered access token and a full
access token). Windows will create two access tokens for the user if either of the
following is true:

1. The user's account contains any of the following RIDs:
¢ DOMAIN_GROUP_RID_ADMINS
¢ DOMAIN_GROUP_RID_CONTROLLERS
¢ DOMAIN_GROUP_RID_CERT_ADMINS
+ DOMAIN_GROUP_RID_SCHEMA_ADMINS
¢ DOMAIN_GROUP_RID_ENTERPRISE_ADMINS
+ DOMAIN_GROUP_RID_POLICY_ADMINS

« DOMAIN_ALIAS_RID_ADMINS

- DOMAIN_ALIAS_RID_POWER_USERS

- DOMAIN_ALIAS_RID_ACCOUNT_OPS

- DOMAIN_ALIAS RID_SYSTEM_OPS

- DOMAIN_ALIAS_RID_PRINT_OPS

- DOMAIN_ALIAS_RID_BACKUP_OPS

- DOMAIN_ALIAS_RID_RAS_SERVERS

- DOMAIN_ALIAS_RID_PREW2KCOMPACCESS

« DOMAIN_ALIAS_RID_NETWORK_CONFIGURATION_OPS
« DOMAIN_ALIAS_RID_CRYPTO_OPERATORS

The user’s account contains any Windows privileges other than those of a standard
user account. A standard user account contains only the following Windows
privileges:

» SeChangeNotifyPrivilege

» SeShutdownPrivilege

» SeUndockPrivilege

» SelncreaseWorkingSetPrivilege
» SeTimeZonePrivilege

Note

What Windows privileges the filtered access token contains are based on
whether the original access token contained any of the restricted RIDS listed
above. If any of the restricted RIDs were in the access token, all of the Windows
privileges are removed except:

SeChangeNotifyPrivilege
SeShutdownPrivilege
SeUndockPrivilege
SeReserveProcessorPrivilege
SeTimeZonePrivilege

If no restricted RIDs were in the access token, only the following Windows
privileges are removed:

23

24

SeCreateTokenPrivilege
SeTcbPrivilege
SeTakeOwnershipPrivilege
SeBackupPrivilege
SeRestorePrivilege
SeDebugPrivilege
SelmpersonatePrivilege
SeRelabelPrivilege

The first access token, called the filtered access token, has the previous RIDs (if present)
marked as USE_FOR_DENY_ONLY in the access token and the administrative Windows
privileges, not listed previously, removed. The filtered access token will be used by
default when the user launches applications. The unmodified full administrator access
token is then attached to the filtered access token and is used when requests are made
to launch applications with a full administrator access token.

More information on RIDs can be found at MSDN
(http://go.microsoft.com/fwlink/?Linkld=71494).

More information on Windows privileges can be found at MSDN
(http://go.microsoft.com/fwlink/?Linkld=71495).

UAC Architecture

The following diagram represents the process flow for executable launches in Windows
Vista.

UAC architecture

User

Elevation Elevation
Prormpt Prormpt

Defrag
o

Explarer (ser

The following is a description of the process flow displayed in the UAC architecture
diagram and how UAC is implemented when an executable attempts to launch.

25

26

Standard User Launch Path

The Windows Vista standard user launch path is similar to the Windows XP launch path,
but includes some modifications.

1. ShellExecute() calls CreateProcess().

2. CreateProcess() calls AppCompat, Fusion, and Installer Detection to assess if the
application requires elevation. The executable is then inspected to determine its
requestedExecutionLevel, which is stored in the executable's application manifest.
The AppCompat database stores information for an application's application
compatibility fix entries. Installer Detection detects setup executables.

3. CreateProcess() returns a Win32 error code stating
ERROR_ELEVATION_REQUIRED.

4. ShellExecute() looks specifically for this new error and, upon receiving it, calls across
to the Application Information Service (AlS) to attempt the elevated launch.

Elevated Launch Path
The Windows Vista elevated launch path is a new Windows launch path.

1. AIS receives the call from ShellExecute() and reevaluates the requested execution
level and Group Policy settings to determine if the elevation is allowed and to
subsequently define the elevation user experience.

2. If the requested execution level requires elevation, AlS launches the elevation
prompt on the caller’s interactive desktop (based on Group Policy), using the HWND
passed in from ShellExecute().

3. Once the user has given consent or valid administrator credentials, AIS will retrieve
the corresponding access token associated with the appropriate user, if necessary.
For example, an application requesting a requestedExecutionLevel of
highestAvailable will retrieve different access tokens for a user that is only a member
of the Backup Operators group than for a member of the local Administrators group.

4. AIS reissues a CreateProcessAsUser() call, supplying the administrator access token
and specifying the caller’s interactive desktop.

Will UAC Affect your Application?

Whether or not your application will be affected by UAC depends on the application’s
current state. In a number of cases, no changes will be necessary to comply with
Microsoft Windows® Security requirements. However, some applications, including line

27

of business (LOB) applications, may require changes to their install, function, and update
processes to properly work in a Windows Vista UAC environment.

If an application works well as standard user on Windows XP, then it will work
well as a standard user on Windows Vista.

Why Do | Need to Remove My Application’s Administra tive
Dependencies?

One fundamental step toward increasing the security of the overall computing
environment is to allow users to run without using their administrator access token. If an
application only operates or installs when the user is an administrator, users are being
forced to run applications with unnecessary elevated access. The fundamental problem is
that, when users are always forced to run applications using elevated access tokens,
deceptive or malicious code can easily modify the operating system, or worse, affect
other users.

Microsoft’s goal is for customers to understand that applications should not unnecessarily
run as an administrator and for users to question any time they are asked to approve an
application’s request to run as an administrator. UAC is a fundamental component for
helping to achieve this goal.

Reducing Your Application's Total Cost of Ownership

The standard user account is very attractive to information technology (IT) administrators
interested in increasing security and control over their managed computers while
reducing total cost of ownership (TCO). Because a standard user account cannot make
system changes, there is a direct relationship to the reduction of TCO and better
management of application installation and system-wide modifications. The standard user
account is also attractive to home users since many parents share a computer with their
children. Microsoft Windows Vista includes integrated parental controls, which are only
successfully implemented by creating children's user accounts as standard users.
Standard user accounts also cannot change or delete files created by other users. They
cannot read files in other users’ profiles, infect system files, or alter system-shared
executables, either accidentally or deliberately. Standard user accounts result in an
overall improvement in computer security and parental controls.

28

Secure by Default

At Microsoft, the tenets of Microsoft's Trustworthy Computing Initiative have been
ingrained into software development. Consequently, improved security has been an
integral part of the Windows Vista development process.

The security pillar of Trustworthy Computing encompasses three fundamentals: secure
by design, secure by default, and secure in deployment. How you and other independent
software vendors (ISVs) develop your applications to contribute to the overall security of
the operating system will be a key success factor for achieving Trustworthy Computing in
Windows Vista.

The goal of the remainder of this guide is to help assist application developers with
learning how to do the following:

» Write applications that do not require the user to be an administrator to perform
routine tasks.

» Create installation packages with Windows® Installer 4.0 UAC patching technologies
that deploy well to the standard user desktop in enterprises and also update correctly
in the home.

» Identify standard user and administrative functionality and extrapolate administrative
tasks for UAC compatibility

» Write application user interfaces that utilize the UAC functionality

It is essential for the success of UAC that application developers embrace the philosophy
of least-privilege and design their applications to function correctly when running with a
standard user account.

One of the goals of the Windows Vista release is to evangelize and encourage the
principle of designing for standard users and administrators in Admin Approval Mode to
all developers. Achieving this goal will assist in the prevention of various attacks against
individual applications and mitigate the possibility that such attacks will compromise the
security of the system. Although these goals can be accomplished in some degree today
by requiring administrators to use two accounts, they tend to fail for the following
reasons:

» Itis nearly impossible to control a user that has a full administrator access token.
Administrators can install applications and run any application or script that they wish.
IT managers are always seeking ways to create "standard desktops" where users log
on as standard users. Standard desktops greatly reduce help desk costs and reduce
IT overhead.

* There is substantial overhead when switching between accounts whenever the user
wishes to perform an administrative operation.

29

» After users perform administrative operations, they may forget to switch back to a
standard user account, or they might decide that it is too much effort to switch back.

As a result, users may decide to always logon with their administrator accounts, thus
defeating the security measures. To help mitigate this, UAC introduces the concept of
Admin Approval Mode.

In the enterprise, Admin Approval Mode will be used as a bridge technology for migration
to Windows Vista. Ideally, enterprises will run all users as standard users and disable the
elevation prompt for standard users. This setup enables a managed standard desktop
where installations are deployed with a software deployment technology, such as
Microsoft Systems Management Server (SMS).

@ Important

Microsoft still recommends that members of the Domain Admins group continue
to maintain two separate user accounts in Windows Vista: a standard user
account and a domain administrator user account. All domain administration
should be done with the domain administrator account. To further enhance
security, consider deploying a smart card
(http://go.microsoft.com/fwlink/?Linkld=71505) solution in domain environments.

The following are Windows Vista design goals for Admin Approval Mode:

» Eliminate the need for two separate accounts for users who are members of the
administrators group: This goal is accomplished by running programs only with a
standard user access token, unless the user provides approval to use the full
administrator access token.

» Protect processes running with a full administrator access token from being accessed
or modified by processes running as a standard user.

* Provide for a seamless transition between administrator and standard user
workspaces.

Currently, many Windows applications must be run as an administrator but do not
actually perform administrative operations. These applications are a byproduct of the
Microsoft Windows® 9x operating systems philosophy: “everyone is an administrator.”

The following are examples of problematic applications:

» Applications that unnecessarily write to HKEY_LOCAL_MACHINE or to system files
within the file system.

* An ActiveX® installation to facilitate a LOB application with a Web interface.

» Applications that unnecessarily request access to resources that require a full
administrative access token.

30

The next section presents new technologies for Windows Vista that impact ISVs.

How Do | Determine If My Application Has Administra tive
Dependencies?

To assist developers, ISVs, and organizations in evaluating their applications, Microsoft
provides the Microsoft Standard User Analyzer. The Standard User Analyzer can be used
to help identify an application's non-UAC—compliant. Microsoft recommends that
developers run this tool to identify issues with running the application under a standard
user account. These tests should be performed, even if the application already installs
and runs properly under a standard user account on Windows XP. The application may
perform operations, such as attempting to write to system registry locations, and make
decisions based on the system’s behavior, such as looking for an error response.
Windows Vista may behave differently than earlier versions of the Windows operating
system due to the addition of new application compatibility support. Therefore, it is
recommended that all applications be tested with the new version of the Standard User
Analyzer, which can be downloaded from Microsoft
(http://go.microsoft.com/fwlink/?Linkld=71359).

The Standard User Analyzer will record all administrative operations encountered by an
application, including registry/file system access and elevated API calls. This data is
stored in a log file and is displayed within the tool. The Standard User Analyzer identifies
the following common dependencies, in addition to many others:

» Dependency on objects that restrict the requested access to trusted users only.

For example, HKEY_LOCAL_MACHINE only grants KEY_WRITE to administrators and
SYSTEM—an application that requests KEY_WRITE to HKEY_LOCAL_MACHINE will
not work with UAC enabled.

» Use of Windows privileges that have security ramifications, such as
SE_DEBUG_PRIVILEGE, which allows the debugging of other users' processes and
is granted only to administrators.

What Are the Requirements If | Have a Legitimate
Administrator Application?

For applications that, by design, perform legitimate administrative operations, Microsoft
has implemented an extension to the trustinfo section of the current Windows XP
application manifest schema. You can use these new attributes to indicate to the
computer that you have a legitimate administrative application; Windows Vista will
automatically ask the user for approval to launch the application with a full administrator

31

access token. For information about how to extend the application manifest, see the
Create and Embed an Application Manifest with Your Application section within this
document.

Designing Applications for Windows Vista

The following list represents a workflow for designing your application for Windows Vista:

Test your application for Windows Vista application compatibility

Classify your application as a standard user, administrator, or mixed user application

Redesign your application's functionality for UAC compatibility

Redesign your application's user interface for UAC compatibility

Redesign your application's installer

Create and embed an application manifest with your application

Test your application

Authenticode sign your application

© © N o g ~ w dPF

Participate in the Windows Vista Logo program

Step One: Test Your Application for Windows Vista
Application Compatibility
Testing for Windows Vista and UAC application compatibility can be easily performed by

installing the Standard User Analyzer. The Standard User Analyzer is a free download on
the Microsoft Web site (http://go.microsoft.com/fwlink/?Linkld=71359).

To utilize the Standard User Analyzer's graphical log display, you must install the
Microsoft Application Verifier. The Application Verifier is a free download on the Microsoft
Web site (http://go.microsoft.com/fwlink/?Linkld=71506).

The following procedure illustrates how to use the Standard User Analyzer to identify pre-
Windows Vista administrative applications that do not run correctly on Windows Vista.

@ Important

There are two approaches you can take to utilize Standard User Analyzer: launch
your application as standard user or launch your application elevated as an
administrator.

32

Launch your application as standard user. In this instance, the Standard User
Analyzer is running in diagnosis mode. The application will fail at the first error it
encounters and the Standard User Analyzer will report why it failed.

Launch your application elevated as an administrator. In this instance, the
Standard User Analyzer is running in prediction mode. The application will be
able to run through its course and the Standard User Analyzer will predict and
give an overview of the errors the application might encounter if it is run as
standard user.

Once the bugs are fixed and resolved, perform this procedure once more as a
standard user without the Standard User Analyzer to ensure your application is
working as expected on Windows Vista.

[=To identify application compatibility problems for pre-Windows Vista

applications

1. Log on to a Windows Vista computer as an administrator in Admin Approval
Mode.

2. Click Start, click All Programs , and then click Standard User Analyzer .

3. Inthe Standard User Analyzer , for Target Application , specify the full directory
path for an application to test or click the Browse button to locate the program's
executable file with Windows Explorer.

4. Click Launch and then click Continue at the User Account Control dialog box.

5. After the test application launches, perform standard administrative tasks in the
application, and then close the application when you have completed.

6. Inthe Standard User Analyzer , examine the output on each tab. Use this data

to identify the program's application compatibility issues.

Step Two: Classify Your Application as a Standard U ser,
Administrator, or Mixed User Application

Administrative applications in Windows Vista often have a mixture of both administrative
and standard user functionality. As a result, a number of options must be considered
when deciding how your application will work in Windows Vista. The administrative
functionality can be removed completely or separated from the standard user account
functionality by prompting the user for approval.

33

Questions to Help Classify Your Application

Answer the following questions to determine whether your application will require any
redesign for Windows Vista compatibility:

» Does your application run as a standard user?

» Can the administrative functionality be fixed to no longer require an administrator
access token?

* Can the administrative sections be removed from the program's functionality?

Does Your Application Run as a Standard User?

To answer this question, ensure that the application can be fully used by standard users.
If any part of your application requires the user to be an administrator, the answer to this
guestion is “No.”

How to verify that the application can be used by standard users:

» Thoroughly test the application as both a standard user and an administrator. Verify
that the user interactions are all exactly the same for both standard users and
administrators.

» Check where the settings are stored in the registry. If any settings are stored in
HKEY_LOCAL_MACHINE, the application or control panel will most likely require an
administrator access token.

» If any of the settings are per-computer, the application or control panel will require an
administrator access token.

» If any of the settings do anything in other users’ profiles, the application or control
panel will require an administrator access token.

Can the Administrative Functionality be fixed to no Longer Require an
Administrator Access Token?

If your application or control panel has settings or interactions that require a full
administrator access token, can it be changed to work correctly as a standard user?
Specifically, can the program store information in per-user locations instead? If it cannot,
the answer to this question is "No."

A good example of the kind of feature/setting that can be fixed is Calc.exe (the Windows
Calculator). In Windows XP, the setting of whether Windows Calculator was in “Scientific”
versus “Standard” mode was a per-computer setting. This setting meant that a full
administrator access token was needed to change the setting. In Windows Vista, this
setting is stored in the user’s profile.

34
How to verify that administrative sections can be removed from the program'’s
functionality:

» Thoroughly test the application as both a standard user and as an administrator. Can
the experience be the same for both types of users?

* Is it possible to lower the ACLs required to write to the HKEY_LOCAL_MACHINE
key?

J Note

This course should not be taken lightly. Be cautious not to compromise the
overall security of the computer by lowering the control afforded by the ACL.

» Is it possible to change the user interface to set per-user state rather than global
state (and do not expose global state modification through the user interface)?
Can the Administrative Sections be Removed from the Program’s Functionality?

Does your program absolutely have to have this administrative functionality? If you
cannot remove the administrative features/functionality, the answer to this question is
"NO."

To determine whether the administrative sections can be removed from the program's
functionality, do the following:

» Test the application as a standard user and as an administrator. What is the user
scenario for retaining this feature?

» Is this setting/feature exposed elsewhere in the application? Perhaps the functionality
in the application is redundant.

Analyzing the Answers to Classify Your Application

If You Answered "Yes" to any of the Preceding Quest ions

Make the necessary changes in the application or control panel (if any) to eliminate those
items that require the user to have a full administrator access token.

The following list details benefits of having a true standard user application:

* Your feature is equally usable for all users. This is the ideal state since most features
should not require a full administrator access token.

* Your users will never see an elevation prompt with your features.

* Your features are much more secure by never requiring the administrator access
token.

35

If You Answered "No" to all of the Preceding Questi ons

The application must be modified to make the feature work with UAC.

Verify the Application or Control Panel Works with UAC:

Finally, test the application as a standard user and as an administrator. Ensure that other
options (the previous questions) cannot be used for this particular application.

Step Three: Redesign Your Application's Functionali ty for
UAC Compatibility

Use the information in this section once you have classified your application and
determined whether it must be redesigned for UAC.

Windows Vista Application Run-time Requirements

A large component of redesigning your application for Windows Vista will be examining
your application's user access model at its core.

Requirements for all Windows Vista Applications

Specify a requestedExecutionLevel

For UAC to operate properly, the operating system has to be able to identify what code
needs elevated privilege and what code does not.

In Windows Vista, these changes require that applications be marked with information
that allows the operating system to determine in what context the application should be
launched. For example, standard user applications need to be marked to run as the
invoker and accessibility-enabled applications need to be identified by the system.

Do not register components with Rundll32

Some applications use the Windows Rundll32 executables to run components. However,
this method is not compliant with Windows Vista development requirements. Calling
directly into Rundll32 results in UAC compatibility issues. When an application relies on
the Rundll32 executables to perform its execution, Rundll32 calls AIS on behalf of the
application to initiate the UAC elevation prompt. As a result, the UAC elevation prompt
has no knowledge of the original application and displays the application requesting
elevation as “Windows host process(Rundll32).” Without a clear description and icon for
the application requesting elevation, users have no way to identify the application and
determine whether it is safe to elevate it.

36

If your application calls into Rundll32 to run components, use the following workflow to
redesign the execution call.

1. Create a new separate executable file for your application.

2. In the new executable file, call the exported function in your DLL that you would have
specified with Rundll32. You may need to LoadLibrary the DLL if it does not have a
dib.

3. In aresource file, create and add a new icon for the executable. This icon will be
displayed in the User Account Control dialog box when the application requests
elevation.

4. Provide a short, meaningful name for the executable. This name will be shown in the
User Account Control dialog box when the application requests elevation.

5. Create and embed an application manifest file for the executable and mark it with the
requested execution level of requireAdministrator. This process is detailed in the
Create and Embed an Application Manifest with Your Application section.

6. Authenticode sign the new executable. This process is detailed in the Authenticode
Sign Your Application section later in this document.

Finally, following the un-installation of an application, the user should be able to reinstall it
without errors.

Requirements for Standard User Applications

Here is a summary of things to remember when designing applications that operate
correctly under a standard user account. Developers should keep these requirements in
mind during the design phase of their applications.

Setup

» Never perform administrative actions (such as completing the setup process) on first
run; these actions should be done as part of the initial setup process.

* Never write directly to the Windows directory or subdirectories. Use the correct
methods for installing files, such as fonts.

« If you need to automatically update your application, use a mechanism suitable for
use by standard users, such as Windows Installer 4.0 User Account Control patching
to accomplish the update.

Saving State

» Do not write per-user information or user-writable information to Program Files or
Program directories.

37

» Do not use hard-coded paths in the file system. Take advantage of the KnownFolders
API and ShGetFolder to find where to write data.

Run and Test Under a Standard User Account

If you are writing a non-administrative application, such as a LOB application or a user
application, such as a game, you must always write application data to a location that
standard users can access. The following are some of the recommended requirements:

» Write per-user data to the user profile: CSIDL_APPDATA.

* Write per-computer data to Users\All Users\Application Data:
CSIDL_COMMON_APPDATA.

» The application cannot depend on any administrative APIs. For example, a program
that expects to successfully call the SetTokenInformation() Windows function will fail
under a standard user account.

Be Fast User Switching (FUS) Aware

Applications will more commonly be installed by a user other than the user who will run
the application. For example, in the home, this means that a parent will install the
application for a child. In the enterprise, a deployment system, such as SMS or Group
Policy advertisement, will install the application using an administrator account.

If the per-user settings do not exist at first run, rebuild them. Do not assume that the
setup process took care of the settings.

Requirements for Administrator Applications

Use the HWND Property to be acknowledged as a Foreg round Application

Background applications will automatically prompt the user for elevation on the taskbar,
rather than automatically switching to the secure desktop for elevation. The elevation
prompt will appear minimized on the taskbar and will blink to notify the user that an
application has requested elevation. An example of a background elevation occurs when
a user browses to a Web site and begins downloading an installation file. The user then
goes to check e-mail while the installation downloads in the background. Once the
download completes in the background and the install begins, the elevation is detected
as a background task rather than a foreground task. This detection prevents the
installation from abruptly stealing focus of the user's screen while the user is performing
another task--reading e-mail. This behavior creates a better user experience for the
elevation prompt.

However, some foreground applications currently prompt as background applications on
Windows Vista. This behavior is the result of an absent parent HWND. In order to ensure

38

that Windows Vista acknowledges your application as a foreground application, you must
pass a parent HWND with a ShellExecute, CoCreatelnstanceAsAdmin, or managed code

call.

The UAC elevation mechanism uses the HWND as part of determining whether the
elevation is a background or foreground elevation. If the application is determined to be a
background application, the elevation is placed on the taskbar as a blinking button. The
user must click on the button, as with any application requesting foreground access,
before the elevation will continue. Not passing the HWND will result in this occurring even
though the application might actually have foreground.

The following code sample illustrates how to pass HWND with ShellExecute:

BOOL RunAsAdmin(HWND hwnd, LPTSTR IpFile, LPTSTR | pParameters)
{

SHELLEXECUTEINFO sei;

ZeroMemory (&sei, sizeof(sei));

sei.cbSize = sizeof(SHELLEXECUTEINFOW) ;

sei.hwnd = hwnd;

sei.fMask = SEE_MASK_FLAG_DDEWAIT | S EE_MASK_FLAG_NO_UI,
sei.lpverb = _TEXT("runas");

sei.lpFile = IpFile;

sei.lpParameters = IpParameters;

sei.nShow = SW_SHOWNORMAL;

if (! ShellExecuteEx (&sei))
{

printf("Error: ShellExecuteEx failed 0x%x\ n", GetLastError());
return FALSE;

}
return TRUE;

The following code sample illustrates how to pass HWND with
CoCreatelnstanceAsAdmin by using the elevation moniker. It assumes that you have
already initialized COM on the current thread. More information about the elevation
moniker is available in Step Four of this document.

HRESULT CoCreatelnstanceAsAdmin(HWND hwnd, REFCLSID rclsid, REFIID riid, __out
void ** ppv)
{

BIND_OPTS3 bo;

WCHAR wszCLSID[50];

WCHAR wszMonikerName[300];

StringFromGUID2(rclsid, wszCLSID, sizeof(wszCLS ID)/sizeof(wszCLSID[0]));
HRESULT hr = StringCchPrintf(wszMonikerName,
sizeof(wszMonikerName)/sizeof(wszMonikerName[0]),

39

L"Elevation:Administrator'inew:%s", wszCLSID);
if (FAILED(hr))
return hr;
memset(&bo, 0, sizeof(bo));
bo.cbStruct = sizeof(bo);
bo.hwnd = hwnd,;
bo.dwClassContext = CLSCTX_LOCAL_SERVER;
return CoGetObject(wszMonikerName, &bo, riid, p pv);

BIND_OPTS3 is new in Windows Vista. It is derived from BIND_OPTS2. It is defined as
follows:

typedef struct tagBIND_OPTS3 : tagBIND_OPTS2

{
HWND hwnd;

} BIND_OPTS3, * LPBIND_OPTS3;

The only addition is an HWND field, hwnd. This handle represents a window that
becomes the owner of the elevation Ul when secure desktop prompting is enabled.

The following code sample illustrates how to pass HWND in managed code to ensure
that parent dialogs are aware of the HWND and its use.

System.Diagnostics.Process newProcess = new System. Diagnostics.Process();
System.Diagnostics.ProcessStartinfo info = new
System.Diagnostics.ProcessStartinfo(“D:\SomeProgram .exe”);

info.UseShellExecute = true;
info.ErrorDialog = true;
info.ErrorDialogParentHandle = this.Handle;
newProcess.StartInfo = info;
newProcess.Start();

Do Not Prompt for Elevation in the User's Logon Pat h

Applications that start when the user logs on and require elevation are now blocked in the
logon path. Without blocking applications from prompting for elevation in the user's log on
path, both standard users and administrators would have to respond to a User Account
Control dialog box on every log on. Windows Vista notifies the user if an application has
been blocked by placing an icon in the system tray. The user can then right-click this icon
to run applications that were blocked from prompting for elevation as the user logged on.
In addition, the user can manage which startup applications are disabled or removed
from this list by double-clicking on the tray icon.

Do Not Use Runas to Launch an Elevated Process

40

The Run as... option from Windows XP and Windows Server 2003 has been replaced
with Run as administrator on the context menu (available when you right-click an
executable) in Windows Vista. When a standard user selects the Run as administrator
option, the user is presented with a list of active administrators on the local computer.
Standard users with higher privileges, such as members of the Backup Operators group,
are also displayed. When an administrator selects the Run as administrator option, a
User Account Control dialog box immediately prompts the user to continue before
running the application.

Users must use the runas command at the command prompt in order to run an
application as another user.

@ Important

Be aware that runas does not provide the ability to launch an application with an
elevated access token, regardless of whether it is a standard user with privileges
like a Backup Operator or an administrator. The runas command grants the user
the ability to launch an application with different credentials. The best method to
use to launch an application with a different account is to perform the action
programmatically by using a service and not rely on the user to run the
component as a different user. If your program programmatically uses the runas
command, ensure that it is not intended to launch an elevated process.

If your application will require the user to run parts of the application with a different user
account, ensure that the runas command with the command prompt option is exposed.
The following table details the available parameters for the runas command.

Runas parameters

Parameter Description

/noprofile Specifies that the user's profile should not
be loaded. This enables the application to
load more quickly, but can cause some
applications to malfunction.

[profile Specifies that the user's profile should be
loaded. This is the default setting.

lenv Use the current environment instead of the
user's.
/netonly Use this parameter if the credentials

specified are for remote access only.

41

Parameter Description

/savecred Use credentials previously saved by the
user. This option is not available on
Windows XP, Home Edition, and will be
ignored.

/smartcard Use this parameter if the credentials to be
provided are from a smart card.

luser The user's user name. The user name
should be provided in the form of
USER\DOMAIN or USER@DOMAIN.

/showtrustlevels Displays the trustlevels that can be used as
arguments for the /trustlevel parameter.

ftrustlevel One of the levels enumerated in
/showtrustlevels.

program Command line for an executable.

Examples:

runas /noprofile /Juser:mymachine\Denise cmd

u? Note

Enter the user's password only when prompted. The /profile parameter is not
compatible with the /netonly parameter. The /savecred parameter is not
compatible with the /smartcard parameter.

Requirements for Console Applications

A console application presents its output on the console window and not with a separate
user interface. If an application needs a full administrator access token to run, then that
application needs to be launched from an elevated console window.

You must do the following for console applications:

1. Mark that your application “asinvoker”: You can do this by authoring the manifest
of your application in which you set RequestedExecutionLevel == asinvoker. This
setup allows callers from non-elevated contexts to create your process, which allows
them to proceed to step 2.

42

2. Provide an error message if application is run with out a full administrator
access token: If the application is launched in a non-elevated console, your
application should give a brief message and exit. The recommended message is:

» “Access Denied. Administrator permissions are needed to use the selected
options. Use an administrator command prompt to complete these tasks.”

The application should also return the error code ERROR_ELEVATION_REQUIRED
upon failure to launch to facilitate scripting.

Requirements for Scripts

Scripts may be considered as a group of applications run in a predefined order and the
results of one being channeled into other.

In order to make your scripts UAC compliant, examine the logic of your scripts and add
“tests” to ensure the person running the script has sufficient privileges to do that task.
This check should be done before performing an action in the script.

Requirements for Bulk Operations

If your application performs a task that consists of actions on multiple objects, and some
of them might require the user's administrator access token, then show the elevation
prompt the first time the access token is needed. If the user approves the elevation, then
perform the rest of the tasks. Otherwise, terminate the batch operation. This behavior
would be consistent with the current multi-select/copy/delete operation.

APIs that Help Identify an Administrator

* IsUserAnAdmin()

» GetTokenInformation()

Registry/Handle Access Permissions that are Inheren tly Different between
Administrators and Standard Users

* MAXIMUM_ALLOWED
« KEY_WRITE
 DELETE (when applied to registry keys)

e Other HKEY_LOCAL_MACHINE (HKLM) type keywords (opened with
MAXIMUM_ALLOWED on XP):

* SHELLKEY_HKLM_EXPLORER
* SHELLKEY_HKLM_SHELL

43

Other APIs that Are Re-directed to HKEY_LOCAL_MACHI NE Registry Values and
Virtualization will Apply

* WritePrivateProfileString(,,,”system.ini”);

» CheckSectionAccess(“system.ini”,...);

Step Four: Redesign Your Application's User Interfa ce for
UAC Compatibility

Use the guidelines in this section to develop your application's user interface for UAC
compatibility. Closely adhering to these guidelines in your application's development will

ensure that your application will have a consistent and predictable user experience in
Windows Vista.

* Impact of UAC on the Windows user experience

» Goals of the UAC user experience

» Elevation prompt

» User experience process flow

« Elevation entry points

* User interface implementation

 When to add a shield icon to your application's user interface

» Key decisions for designing administrator-only applications

@ Important

Simply refractoring your application's user interface will not fulfill the
requirements for UAC compatibility. Your application's core functionality must
comply with the Windows Vista standard user model requirements. These
requirements were detailed in the previous step, Step Three: Redesign Your
Application's Functionality for UAC Compatibility.

Impact of UAC on the Windows User Experience

The biggest and most immediate impact on the user experience will be felt by
administrators. Administrator users will now need to provide permission to accomplish
administrative tasks. Coupled with that, standard users will now gain the ability to perform
administrative tasks within the currently logged in session by providing valid administrator
credentials.

a4

Goals of the UAC User Experience

The overall goal for UAC user experience is to provide predictability in the user
experience:

» For an administrator, this means that the user always know when he/she will need to
give permission to run an elevated task.

This is the act of requesting the user's own administrator access token so that he/she can
make administrator-required changes.

» For standard users, this means that they will know when they:

* Will need to provide administrator credentials (home and unmanaged
environments) for administrative tasks.

 OR When they cannot complete a task (managed environments where elevation
is explicitly disallowed) and must contact the help desk.

Design Goals

The following list comprises the UAC design goals.

Eliminate Unnecessary Elevation

Users should have to elevate only to perform tasks that require an administrator access
token. All other tasks should be designed to eliminate the need for elevation. Pre-
Windows Vista software often requires an administrator access token unnecessarily by
writing to the HKEY_LOCAL_MACHINE or HKEY_CLASSES ROOT registry sections or
to the Program Files or Windows system folders.

Be Predictable

Administrators need to know which tasks require elevation. If they cannot predict the
need for elevation accurately, they are more likely to give consent for administrative tasks
when they should not. Standard users need to know which tasks require an administrator
to perform or cannot be performed at all in managed environments.

Require Minimal Effort

Tasks that require a higher privileged access token should be designed to require a
single elevation. Tasks that require multiple elevations quickly become tedious.

Revert to Standard User

Once a task that requires a higher level of access token is complete, the program should
revert to the standard user state.

45

Elevation Prompt

The elevation prompt is built upon an existing Windows user interface. The elevation
prompt displays contextual information about the executable requesting elevation, and
the context is different depending on whether the application is Authenticode signed. The
elevation prompt is seen in two variations: the consent prompt and the credential prompt.

Consent Prompt

The consent prompt is displayed to administrators in Admin Approval Mode when they
attempt to perform an administrative task. This is the default user experience for
administrators in Admin Approval Mode and can be configured in the local Security Policy
Manager snap-in (secpol.msc) and with Group Policy.

The following figure is an example of a User Account Control consent prompt.

User Account Control consent prompt

(&

User Account Control ..

@ Windows needs your permission to continue

If you started this acticn, continue,
|'_ i Microsoft Management Conscle
Micresoft Windows Publisher
i

\\-r Details Continue]E Cancel 1

User Account Control helps stop unauthorized changes to vour computer.

Credential Prompt

The credential prompt is displayed to standard users when they attempt to perform an
administrative task. This is the default user experience for standard users and can be
configured in the local Security Policy Manager snap-in (secpol.msc) and with Group
Policy.

The following figure is an example of a User Account Control credential prompt.

User Account Control credential prompt

=

G] Windows needs your permission to continue

If you started this action, continue.

= E' Microsoft Management Conscle
Microsoft Windows Publisher

To continue, type an administrator password, and then click QK.

| DENISEPC\Denise

e Password
L
| Use another account
\{r- Details [oK] ’ Cancel

User Account Control helps stop unauthorized changes to your computer.

; ﬂser-ﬁccuuni—'ﬁonir_ﬁ.ﬁ :

Default Elevation Prompt Consent Policy for Windows Vista

The following table outlines the default prompt style for each user account type in

Windows Vista.

Default elevation prompt behavior

46

User Account Type Elevation Prompt Setting
Standard user Prompt for credentials
Administrator account in Admin Approval Prompt for consent
Mode

47

User Experience Process Flow

The UAC user experience process flow consists of three distinct components:

1. Elevation entry point (for example, a control or link that displays the UAC shield icon).
2. Elevation prompt (a request for consent or for administrator credentials).

3. Elevated process.

The following example workflow summarizes how the preceding components are related:
1. An administrator in Admin Approval Mode logs on to a Windows Vista computer.

2. The user then decides to add another administrator user for the computer.

3. The user clicks Start, clicks Control Panel , and then clicks the link in the Security
section entitled Allow a program through Windows Firewall , which is displayed
inline with a shield icon.

4. A consent prompt appears requesting the user for approval.
5. The user clicks Continue and the elevated process is created.

6. In Windows Firewall Settings , the user modifies the Windows Firewall settings and
then clicks OK, which terminates the elevated process.

7. The user continues to work on the computer as a standard user.

J Note

Elevation entry points do not remember state (e.g. when navigating back from a
shielded location or task), as well as the entry point will not remember that
elevation has occurred. As a result, the user will need to re-elevate to enter the
task/link/button again.

Elevation Entry Points

For entry points, the shield icon will be attached to certain controls (e.g. buttons,
command links, hyperlinks) to indicate that the next immediate step requires elevation.
Shield Icon

The shield icon is the primary user interface decoration for a UAC elevation point. This
icon signifies security related activities in Windows Vista and previous versions of
Windows, and this relationship is continued in Windows Vista.

The following figure is an example of the shield icon.

48

Shield icon
7

The shield icon will play a critical part in all three components of the UAC user
experience.

When viewing the system with Windows Explorer, any application that is marked to
request an administrator access token when it is launched will automatically be decorated
with a shield glyph over its icon. This permits users to know which applications, when
launched, will request elevation.

Shield icon properties:

» Consistent appearance throughout the entire UAC user experience.
» Does not reflect any visual state (e.g. active, hover, disabled, etc.).
¢ Does not remember state.

There are three consistent control styles that an entry point marked with a shield icon can
take within the user experience:

 UAC button
* UAC hyperlink
e UAC command link

These styles apply to all scenarios where these user interface elements can appear such
as Wizards, property pages, control panels, explorers, etc. Each of the styles implies that
an elevation prompt will immediately be displayed after the user clicks a UAC user
interface control.

A fourth UAC user interface entry point, the UAC icon overlay, is also discussed in this
section. Whether an executable receives an icon overlay or not is not controlled by the
application developer. Windows Vista overlays a shield icon on applications' icons for
executables that have requestedExecutionLevel set to requireAdministrator.

UAC Shield Button

The UAC shield button should be used in any user interface button that, when pressed,
will require the elevation prompt to prompt the user for approval or credentials.

49

UAC shield buttons can be used as commit buttons (e.g. Next in a Wizard) or as a button
to display an additional settings user interface (e.g. Change Settings in a property
dialog).

The UAC shield button consists of two user interface components:
* Shield icon
» Text label

The UAC shield button is packaged in a manner so that developers can use it in the
place of a normal button. The UAC button also supports rendering the shield icon on the
left or right side of the text label. In addition, developers will have the option to hide/show
the shield icon while the UAC button is displayed.

The following screenshot is an example of a UAC shield button.

UAC shield button

) Change Date and Time...

UAC Hyperlink

The UAC hyperlink should be used in any user interface hyperlink that, when clicked, will
require the elevation prompt to prompt the user for approval or credentials.

A UAC hyperlink consists of the following components:
» Shield icon
» Hyperlink control

The UAC hyperlink is not packaged with the shield icon for a developer to use.
Developers will need to get the shield icon resource and render it next to the hyperlink.

The following screenshot is an example of a UAC hyperlink.

UAC hyperlink

,’J User Accounts
! ¥ Change account type

|

50

UAC Command Link

The UAC command link should be used in any user interface button that, when clicked,
will require the elevation prompt to prompt the user for approval or credentials.

UAC command links should only be used as commit buttons (e.g. “Do this option” in a
dialog box).

The UAC command link consists of the following components:
» Shield icon

» Standard command link components

* Link text

* Note text

The UAC command link is packaged in a way where a developer can use a UAC
command link in the place of a normal command link. The UAC command link supports
rendering the shield icon on the left or right side of the command link.

The following is an example of a UAC command link.

UAC command link

Dizk Cleanup Options r X

= Choose which files to clean up

2 My files only

| ® Allfiles on this computer

Cancel |

Icon Overlays

In Windows Vista, if an executable file requires elevation to launch, then the executable's
icon should be “stamped” with a shield icon to indicate this fact. The executable's
application manifest must designate a requestedExecutionLevel of requireAdministrator
to designate the executable as requiring a full administrator access token. The shield icon
overlay will also be automatically placed on executables that are deemed to require
elevation, as per the installer detection heuristics. For example, a file named setup.exe

51
will automatically receive a shield icon overlay, even if the executable does not have an
embedded application manifest.

The following figure is an example of a UAC icon overlay.

UAC icon overlay

-

#
% |
v

BitLocker
Drive
Encrypticn

u? Note

Guidance about how to create and embed an application manifest with an
executable is provided in the Create and Embed an Application Manifest with
Your Application section of this document.

User Interface Implementation

Shield Icon Implementation and APIs

This section provides preliminary information on the icons and APls available to
developers as they migrate or implement new administrative application functionality.

Shield icon implementation and APIs

Icon API

Shield User resource: IDI_SHIELD

Button Button_SetElevationRequired(hwndButton)

Syslink / Hyperlink Layout IDI_SHIELD next to syslink

Command link Load IDI_SHIELD and set as command link
icon

Context menu Icon support in DefCM for static commands

How do I...

* Add a shield icon to the user interface?

52

* Add a shield icon to a button?

 Add a shield icon to a Windows Installer button?

 Add a shield to a "Next" button control on a Wizard?

 Add a shield icon to a task dialog button?

 Elevate a modal dialog?

Add a Shield Icon to the User Interface

Add a small icon:

#include <shellapi.h>

SHSTOCKICONINFO sii;

sii.cbSize = sizeof(sii);

SHGetStocklconlnfo(SIID_SHIELD, SHGSI_ICON | SHGSI_ SMALLICON, &sii);
hiconShield = sii.hlcon;

Add a large icon:

SHSTOCKICONINFO sii;

sii.cbSize = sizeof(sii);

SHGetStocklconInfo(SIID_SHIELD, SHGSI_ICON | SHGSI_ LARGEICON, &sii);
hiconShield = sii.hlcon;

Add an icon of custom size:

SHSTOCKICONINFO sii;

sii.cbSize = sizeof(sii);

SHGetStocklconInfo(SIID_SHIELD, SHGSI_ICONLOCATION, &sii);
hiconShield = ExtracticonEx(sii. ...);

Generally, you should not add the shield icon directly to your user interface.
Using one of the proceeding methods of embedding the shield icon in a control is
recommended. Additionally, simply adding a shield icon in your user interface will
not ensure UAC compatibility. You must also refractor the entirety of your
application's user experience (add a requestedExecutionLevel, fix any standard
user application compatibility problems, and ensure that the user interface is user
friendly and UAC compatible).

Add a Shield Icon to a Button

The standard button control (PUSHBUTTON, DEFPUSHBUTTON) has been enhanced
to allow you to add an icon along with the displayed text, without requiring the BS_ICON
or BS_BITMAP styles to be set.

53

To display the shield icon, call the following macro (defined in commctrl.h):

Button_SetElevationRequiredState(hwndButton, fRequi red);

hwndButton is the HWND of the button; fRequired determines whether to show
(TRUE) or hide (FALSE) the UAC shield icon.

Add a Shield Icon to a Windows Installer Button

Windows Installer dialogs authored using the internal table support can add a shield to
the last button of the user interface dialog sequence by setting the ElevationShield
attribute on the control.

Add a Shield Icon to a "Next" Button on a Wizard

» Important

Displaying the UAC shield icon the "Next" button is only supported in
AeroWizards (PSH_AEROWIZARD).

To display the shield icon on the "Next" button for a specific page in an
AeroWizard, use the following code:

case WM_NOTIFY:
if (reinterpret_cast<NMHDR*>(IParam)->code == P SN_SETACTIVE)
{
/I Show next button
I

/I Note new wParam flag -- when PSWIZBF_ELE VATIONREQUIRED flag
/I is specified, it indicates that the next page will require
/I elevation, so if the next button is bein g shown, show it as

/I a shield button.

SendMessage(GetParent(hwndDlg),
PSM_SETWIZBUTTONS,
PSWIZBF_ELEVATIONREQUIRED,
PSWIZBF_NEXT);

/I return O to accept the activation
SetWindowLong(hwndDlg, DWLP_MSGRESULT, 0);

}

break;

Add a Shield Icon to a Task Dialog Button

54

0 Caution

A task dialog button should never require a UAC shield icon. The “press” action
on a task dialog button is expected to commit/cancel and dismiss the task dialog.
It would be unexpected for such a button to then display the elevation prompt to
the user.

Elevate a Modal Dialog

You should use the elevation moniker to elevate a COM object representing the modal
dialog. Use the following tasks to elevate using a modal dialog:

* Move the dialog box into a COM obiject.
» Expose a ShowDialog() method.

» Use the CoCreatelnstanceAsAdmin() API to create the COM object and call
ShowDialog().

This API will run an instance of the COM object as administrator after going through the
elevation process.

A version of this API that is more complicated to call is available. A simplified
version will be available in a later version of Windows Vista.

User Education and Assistance Guidelines

When a user interface has been refractored and put behind a button, ISVs should
evaluate whether a change to the button name is warranted. Microsoft strongly advises
against using Advanced as a button label for elevation tasks. Instead, use more
descriptive and understandable labels like Change settings or a term that suggests what
is behind the button.

Guidelines for Administrator-only User Interface

If an application will always be launched by an administrator, then you do not need to add
additional shields within the application's user interface. This is because the application
will be elevated and everything it does will be elevated. Therefore, the application does
not need further elevation.

If you have links to other administrator user interface in your administrator-only
user experience, the user interface will launch its target elevated. Therefore, you
do not need to put any shields in an application that is solely administrative.

55
When to Add the Shield Icon to Your Application's U ser Interface

An Administrative Choice Application

An Elevated Process or COM Object

An elevated process or COM object launches without requiring elevation. Those items in
the user interface that require an administrator access token are decorated with a shield
icon to identify this requirement. The shield icon decoration indicates to the user that
using that feature will require administrator approval. When the application detects that
one of these buttons has been selected, it has the following two choices:

» The application launches a second program using ShellExeucute() to perform the
administrative task. This second program would be marked with a
requestedExecutionLevel of requireAdministrator, thus causing the user to be
prompted for approval. This second program would be running with a full
administrator access token and would be able to perform the desired task.

OR

e The application launches a COM object using CoCreatelnstanceAsAdmin. This API
would launch the COM object with a full administrator access token following
approval, and this COM object would be able to perform the desired task.

This method provides the richest user experience and is the preferred method of dealing
with administrative functionality.

The following list details requirements for an elevated process or COM object:
» The application should implement the shield decoration and its required architecture.
» The developer must determine where the shield should go within the user interface.

» The developer must do the architectural work to separate the business logic into a
COM object from the user interface object.

e The developer must call into the UAC elevation process when the OnClick event for
the shield icon is detected.

The following list details benefits of properly designing an elevated process or COM
object:

» This is the best overall user experience for both user types. The user interface will
launch, viewable to everyone, and all UAC functionality on that user interface will be
accessible to everyone. Only when an administrator task is required does the user
attempt to elevate to complete the task.

» Doing this work now will make you fully UAC compliant moving forward.

56

» The user interface/COM separation is good architectural practice.

Clicking on a shield icon causes the application to launch either an elevated program or
an elevated COM object to perform the task.

Administrator-only Application

In this instance, the application’s initial launch requires administrator approval. This
method is called "prompt before launch." Once launched, the application is running with a
full administrator access token and can therefore perform the desired administrative
tasks. This method requires the least amount of work for the developer, and the
application’s manifest is marked with a requestedExecutionLevel of requireAdministrator.

» Important

While this does require the least amount of work for the developer, please note
that, just like other administrative applications in Windows Vista, administrators
will have to elevate in order to use this application and that standard users will be
unable to use the application unless they have access to administrator
credentials for an administrator account on the computer.

The following list details requirements for administrator-only applications:

» The application manifest should contain a requestedExecutionLevel marking set to
requireAdministrator.

» The user is prompted for administrator approval prior to Windows launching the
application with a full administrative access token.

The following list details benefits of properly designing an administrator-only application:

* The operating system does not have to "guess" if your setup application is an
administrative application.

» Standard users will automatically be given a hint that the operation is an
administrative operation. For example, when you see the icon for an application
marked requireAdministrator, the icon has a shield embedded in the icon.

» On Windows Vista, if you mark your application as requireAdministrator you know
that, once it is launched, it will be running with a full administrator access token.
Users must elevate to run the application (either as an administrator in Admin
Approval mode or by using Run as administrator).

J Note

Marking an application requireAdministrator does NOT silently elevate the
application. The user will still have to give elevation consent to start the

57

application. There is no way to mark an application in Windows Vista to silently
elevate.

The following list details points of consideration for designing an administrator-only
application:

» This user experience means that all users will see an elevation prompt (either the
credential prompt or the consent prompt) prior to the user interface even being
visible. That also means no one is able to simply view the current settings until after
authenticating with administrator credentials

« If you are marking requireAdministrator on a setup application, you should be aware
that the user that is running the setup is different from the user that may use the
application. Therefore, you should not modify HKEY_CURRENT_USER (HKCU) and
other per-user settings, such as writing to the user profile, during your administrative
setup.

@ Important

You must assume that the user running the administrative application is different
from the normal user on the computer.

Executables that require an administrator access token are marked with a shield icon
overlay.

Mixed Application

A mixed application is one that can be run by users—all users of the computer (standard
users, administrators in Admin Approval Mode, and those in between like Backup
Operators). This is also a "prompt before launch" application. The application will run with
the invoker's access token and will launch normally for standard users (no elevation
prompt).The program must then modify its behavior at run time to disable those features
that would not be available to the user based on the access token obtained.

A mixed application does not have the ability to obtain additional administrative privileges
once launched; therefore, it does not provide the flexibility of the elevated process or
COM object method described previously. This is most useful for applications that require
an access token above that of a standard user, but less than that of a full administrator.

For example, the Microsoft Management Console (MMC) is marked highestAvailable. If a
true standard user runs the MMC, MMC will launch as a standard user application without
any elevation attempt or prompt. If the user has a filtered access token, such as an
administrator in Admin Approval Mode or a Backup Operator, the operating system will
prompt the user for consent to launch MMC with the user's "highest" available privilege.
In the case of a standard user who has Backup Operator privileges, after elevation, MMC

58

will be launched with standard user + Backup Operator, but nothing more. If an
administrator launches MMC, after elevation, MMC will be running as a full administrator
application.

The benefit of properly designing a mixed application is that the application is available to
all users of the system, even though some functionality may be disabled.

The following list details points of consideration for designing mixed applications:

» The developer must dynamically change the behavior of the application based on the
user's available administrative Windows privileges and user rights.

» The standard user is prevented from ever being able to act on the administrative-
level functions on the user interface. There is no potential for prompt elevation once
the program is running (the administrators must elevate before opening the user
interface).

J Note

There is one workaround for the previous bullet point. An administrator can
launch an elevated command prompt on the standard user's computer and run
the application from the command prompt. For example, right-click the command
prompt, select Run as administrator , and then type "applicationname.exe" in
the command prompt.

The user experience is branched between the standard user and the administrator in
Admin Approval Mode.

Example Mixed Application: Backup Application

The application could be launched by a member of the Backup Operators group. The
program would then verify that the highest level of administrative Windows privileges and
user rights available from the user is sufficient for the program's operation. For more
information about program launch behavior, see the Application Manifest Marking and
Application Launch Behavior section of this document.

Key Decisions for Designing Administrator-Only Appl ications
Back-End Business Objects

This section provides an overview of the three models a developer can choose when
developing an administrative application that provides the best user experience.

« The Admin Broker model

» The Back-End Service model

59
* The Admin COM Object model

Admin Broker Model

In the Admin Broker model, the application is broken into two independent executables—
a standard user executable and an administrative executable. The developer, using an
application manifest, marks the standard user program with a requestedExecutionLevel
of aslnvoker and marks the administrative program with a requestedExecutionLevel of
requireAdministrator. A user will launch the standard user program first. When the user
attempts to perform an operation that the standard user program knows requires a full
administrator access token, the standard user program performs a ShellExecute() and
launches the administrative program. The Windows ShellExecute() API looks at the
application manifest and requests approval from the user before running the application
with the user's full administrator access token. The administrative program can then
perform the administrative tasks.

The administrative executable program may enable inter-process communication
with a standard user executable using shared memory, local Remote Procedure
Call (RPC), or named pipes. If the administrative program does enable
communication with the standard user executable, the developer needs to use
good security practice to validate all inputs from the lower privilege program.

J Note

There is no communication channel between the two programs once the second
program launches

The following list details uses for the admin broker model:

* Wizards — When the Hardware Wizard realizes that the required driver is not installed
on the computer or located in the enterprise's approved location, it needs an elevated
application with the ability to move a driver into the computer store.

» Autorun.exe calling Setup.exe — The first time you put in a game CD, the required
operation from Autorun.exe is to set up the application. The second time you insert
the CD, the default operation is to play the game.

A benefit to using the admin broker model is that it is probably the easiest mechanism for
the developer to implement.

The following list details some drawbacks to using the Admin Broker Model:

» The transitions from application to application can be confusing to the user. It can be
hard to keep the user apprised of why a new application is “popping up” on the
monitor.

60

* In addition, state is harder to pass between these two applications. For example, you
would not use this to pass state between a standard user control panel (CPL) and its
administrator counterpart simply to allow the same CPL to have administrative and
standard user functionality. The standard user CPL would have to store its state
somewhere.

» Often, there is a lot of replicated code when splitting the functionality between two
programs.

To implement the admin broker model, create two programs (one standard user and one
administrative), mark them with the appropriate application manifest
requestedExecutionLevel, and then launch the administrative program from the standard
user program using ShellExecute().

The Back-End Service Model

In the back-end service model, the application is again broken into two independent
executables—a standard user executable that provides the user interface to the user and
a back-end service running on the system. The front-end application is marked with a
requestedExecutionLevel of asinvoker and the back-end service is running as SYSTEM.
Communication between the application and the back-end service is accomplished with
RPC.

One use for the back-end service model is to control programs that could impact the
system, such as antivirus programs or anti-spyware). The front-end application provides
the means by which the logged on user can control aspects of the service.

A major benefit of using the back-end service model is that no elevation prompting is
required.

The following list details some drawbacks to using the back-end service model:

* The service needs to limit the types of activities the front-end application can tell it to
do. For example, an antivirus service may allow a standard user to initiate a scan of
the system but not to disable real-time virus checking.

» Adding an unnecessary service to the system can impact the entire system. Ensure
that your service is truly necessary for your Windows Vista implementation and that
the service is properly architected.

To implement the back-end service model, create a standard user front-end application
and a back-end service. Install the service in the system during product installation time.

61

The Admin COM Object Model

This model is included here, but was discussed in detail previously in this document. The
admin COM object model allows dynamic administrative elevation to perform specific
operations from within an application or control panel.

A major benefit for using the admin COM object model is that it presents the best user
experience for the user.

The following list details some drawbacks to using the admin COM object model:

* Requires the most work for the developer as each application feature has to be
evaluated and tested for administrator functionality and that function has to be
provided by a back-end COM object.

e User needs to provide elevation approval.

e The resulting "unit" of standard user application and admin backend COM object is
now "drivable" and is not protected by UIPI and other isolation mechanisms.

To implement the admin COM object model, create a standard user front-end application
and launch elevated back-end COM objects to perform administrative tasks.

Step Five: Redesign Your Application's Installer

The following best practices are for well-behaved application installations in a Windows
Vista or UAC environment. This list is not comprehensive. For a more detailed
explanation of the Logo Requirements for Windows Vista, including the UAC
requirements, please see the Windows Vista Logo documentation and the in-depth
version of the latest draft of the Windows Vista Logo guidelines document
(http://go.microsoft.com/fwlink/?Linkld=71497).

Use these requirements while redesigning your application.

1. Use the Windows Installer 4.0 for your setup packag e. Many of the following
requirements are already integrated into the Windows Installer engine. Using
Windows Installer for your setup package will assist you with following Windows Vista
installation requirements.

2. Use versioned files and do not downgrade files duri ng installation. File
versioning ensures that the final installation state is correct when setup is complete.
Without file versions, some special handing will be needed to ensure that your
installation works properly for many different installation scenarios. Also, when
installing versioned files, do not downgrade versions, especially shared files.
Downgrading versions may be good for your application, but it frequently causes

62

issues with other applications. By declaring the correct versions of your files in your
Windows Installer package, Windows Installer natively supports this feature.

Install applications and store per-user data in dif ~ ferent locations. Applications
should be installed in a folder under the Programs Files directory. To configure this,
you can use the ProgramFilesFolder property in the Directory table of your Windows
Installer package. Per-user configuration data should be stored in files either under
the \Users\Username\AppData directory or in registry keys under the
HKEY_CURRENT_USER root. User data, templates, and application-created files all
have proper locations in the \Users\Username subdirectory. Although this was not
enforced in the past, since many users would run programs with a full administrator
access token, applications that do not place information in the correct location are
likely to fail. This is especially true when virtualization is disabled.

Use a consistent folder location when installing sh ared components. Shared
components should be installed to the Common Files directory by using the
CommonkFilesFolder property in the Directory table of your Windows Installer
package. Managing shared components can be problematic and should be avoided,
if possible. A developer who does not install shared components consistently can
end up with Component Object Model (COM) registration information pointing to
older components. The Windows Installer Merge Modules (MSM) feature is
specifically designed to enable shared components to consistently install in the
context of all packages that install the shared component. Other problems arise when
modifications of shared components cause existing applications to fail. One way to
address this issue is for applications to be built using Microsoft .NET— or Win32—
versioned assemblies.

Perform setup rollback if an installation fails. Partially installed software can fail in
strange and unexpected ways providing for a poor user experience. Windows
Installer supports this rollback feature.

Do not install application shortcuts all over the u ser’s profile . While it may be
tempting to add your application icon to every known exposure point in Windows, it
often results in users feeling that they have lost control of their computer. Users are
then forced to manually remove these shortcuts to return the computer to a desired
look and feel. If the developer wants to add icons to the desktop, ask the user for
permission during the installation. Windows Vista addresses discoverability of
applications post install and includes the most recently used application list to avoid
excessive Start menu traversing.

Avoid automatically launching background applicatio ns at user logon.
Although it is possible to add programs to the startup group or Run key during
installation, it adds overhead to the system. Over time, the performance of the user’s

63

computer can significantly degrade. If your application can benefit from a background
task, allow it to be user-configurable. Also, adding a startup task with the HLKM run
key may prevent a standard user account from modifying the behavior in the future. If
the user wants an application to launch at logon, store the information in the run key
of HKEY_CURRENT_USER.

8. Follow clean removal logic. A user might remove an application not only to free up
disk space, but also to return the computer to its state prior to the application being
installed. The application’s uninstall process should correctly and fully remove the
application. Windows Installer defaults to the following removal rules:

» All non-shared application files and folders.
» Shared application files whose reference count (refcount) reaches zero.
» Registry entries, except for keys that might be shared by other programs.

» All shortcuts from the Start menu that the application created at the time of
installation.

» User preferences may be considered user data and left behind, but an option to
do a completely clean removal should be included.

e The uninstaller itself (if not using Windows Installer).

Step Six: Create and Embed an Application Manifest ~ with
Your Application

In Windows Vista, the correct way to mark your applications is to embed an application

manifest within your program that tells the operating system what the application needs.
In the Windows Vista release, there are provisions to allow non-manifested or unsigned
code to run with a full administrative access token.

In future releases, the ONLY way to run an application elevated will be to have a
signed application manifest that identifies the privilege level that the application
needs.

Application Manifest Schema

Application manifests are not new to the Windows Vista release. Manifests were used in
Windows XP to help application developers identify such things as which versions of
DLLs the application was tested with. Providing the execution level is an extension to that
existing application manifest schema.

64

The Windows Vista application manifest has been enhanced with attributes that permit
developers to mark their applications with a requested execution level. The following is

the format for this:

<requestedExecutionLevel
level="asInvoker|highestAvailable|requireAdministra tor"
uiAccess="true|false"/>

Requested Execution Levels

Possible Requested Execution Level Values

Value Description

Comment

aslnvoker The application runs with
the same access token as
the parent process.

Recommended for
standard user applications.
Do refractoring with internal
elevation points, as per the
guidance provided earlier
in this document.

highestAvailable The application runs with
the highest privileges the
current user can obtain.

Recommended for mixed-
mode applications. Plan to
refractor the application in
a future release.

requireAdministrator The application runs only
for administrators and
requires that the
application be launched
with the full access token
of an administrator.

Recommended for
administrator only
applications. Internal
elevation points are not
needed. The application is
already running elevated.

Hosting applications can become standard user or administrator-only
applications only if they support that certain type of hosted application. For
example, the MMC now only hosts administrative snap-ins, and Explorer.exe

only hosts standard user code.

65

System behavior

Application Marking Virtualize?

Unmarked Yes

aslnvoker No
requireAdministrator No

highestAvailable No

Application Manifest Marking and Application Launch Behavior

This section details the behavior of the elevation prompt depending on the parent
process access token, the setting for the User Account Control: Behavior of the
elevation prompt for administrators in Admin Approv al Mode policy and the User
Account Control: Behavior of the elevation prompt f or standard users policy, and
the requested execution level marking for the application.

Whether an application can run and which user rights and administrative Windows
privileges it can obtain are dependent upon the combination of the application’s
requested execution level in the application compatibility database and the administrative
privileges available to the user account that launched the application. The following
tables identify the possible run-time behavior based on such possible combinations.

Application launch behavior for a member of the loc al Administrators group

Parent Consent Policy | None or highestAvailable requireAdministrator
Process for Members of | asinvoker
Access Token | the Local

Administrators

Group
Standard No prompt Application Application Application launches
user launches as a | launches with a | with a full
standard user | full administrative
administrative access token; no
access token; prompt

no prompt

66

Parent Consent Policy | None or highestAvailable requireAdministrator
Process for Members of | asInvoker
Access Token | the Local
Administrators
Group
Standard Prompt for Application Application Application launches
user consent launches as a | launches with a | with a full
standard user | full administrative
administrative access token;
access token; prompt for consent
prompt for
consent
Standard Prompt for Application Application Application launches
user credentials launches as a | launches with a | with a full
standard user | full administrative
administrative access token;
access token; prompt for
prompt for credentials
credentials
Administrator | NA Application Application Application launches
(UAC is launches with | launches with a | with a full
disabled) a full full administrative

no prompt

administrative
access token;

administrative
access token;
no prompt

access token; no
prompt

Application launch behavior for a standard user acc ount
Parent Consent aslnvoker highestAvailable requireAdministrator
Process Policy for
Access Standard
Token Users
Standard No prompt Application Application Application fails to
user launches as a | launches as a launch
standard user | standard user

67

Parent Consent aslnvoker highestAvailable requireAdministrator

Process Policy for

Access Standard

Token Users

Standard Prompt for Application Application Prompt for

user credentials launches as a | launches as a administrator
standard user | standard user credentials before

running application

Standard NA Application Application Application might

user (UAC launches as a | launches as a launch but will fail

is disabled) standard user | standard user later

Application launch behavior for a standard user wit

Backup Operator)

h additional privileges (E.G.

Parent Consent aslnvoker highestAvailable requireAdministrator
Process Policy for
Access Standard
Token Users
Standard No Prompt Application Application Application fails to
user launches as a | launches as a launch
standard user | standard user with
additional
privileges
Standard Prompt for Application Prompt for Prompt for
user credentials launches as a | credentials before | administrator
standard user | running the credentials before
application running application
Standard NA Application Application Application might
user (UAC launches as a | launches as a launch but will fail
is disabled) standard user | standard user with | later

additional
privileges

uiAccess Values

Possible uiAccess values

68

Value

Description

False

The application does not need to drive input
to the user interface of another window on
the desktop. Applications that are not
providing accessibility should set this flag to
false. Applications that are required to drive
input to other windows on the desktop (on-
screen keyboard, for example) should set
this value to true.

True

The application is allowed to bypass user
interface control levels to drive input to
higher privilege windows on the desktop.
This setting should only be used for user
interface Assistive Technology applications.

@ Important

Applications with the uiAccess flag set to true must be Authenticode signed to
start properly. In addition, the application must reside in a protected location in
the file system. \Program Files\ and \Windows\System32\ are currently the two

allowable protected locations.

How to Create an Embedded an Application Manifestw ith Microsoft

Visual Studio®

Visual Studio® provides the capability to automatically embed an XML application
manifest file within the resource section of the Portable Executable (PE) image. This
section addresses how to use Visual Studio to create a signed PE image containing an
application manifest. This application manifest can therefore include the necessary
requestedExecutionLevel attributes, allowing the application to run with the desired
privilege level on Windows Vista. When the program is launched, the application manifest
information will be extracted from the resource section of the PE and used by the
operating system. It is not necessary to use the Visual Studio graphical user interface
(GUI) to include a manifest. Once the necessary changes are in the source code,
compiling and linking using command-line tools will also include the application manifest

in the resulting PE image.

69

Manifest File

To mark your application with a requestedExecutionLevel, first create an application
manifest file to use with the target application. This file can be created by using any text
editor. The application manifest file should have the same name as the target executable
file with a .manifest extension. For example: IsUserAdmin.exe.manifest.

Example

Executable: IsUserAdmin.exe
Manifest:IsUserAdmin.exe.manifest
Sample application manifest file:
<?xml version="1.0" encoding="UTF-8" standalone="ye s"?>
<assembly xmIns="urn:schemas-microsoft- com:asm.v1" manifestVersion="1.0">
<assemblyldentity version=" "
processorArchitecture="X86"

name="

type=" 1>
<description> </description>
<l-- Identify the application security requiremen ts. -->
<trustinfo xmIns="urn:schemas-microsoft-com:asm.v 2">

<security>

<requestedPrivileges>
<requestedExecutionLevel
level="
uiAccess=" ">
</requestedPrivileges>
</security>
</trustinfo>
</assembly>

The parts of the application manifest that need to be adjusted for your application are
marked in the previous example in bold. They include the following:

e The assembly identity
* The name

e The type

» The description

» The attributes in the requestedExecutionLevel

70

Building Application Manifests with Visual Studio® 2005 for Windows
Vista Only Applications

@ Important

If your application is intended to run on both Windows Vista and Windows XP,
you must follow the procedures detailed in the next section: Building and
Embedding an Application Manifest with Microsoft Visual Studio 2005 for
Windows XP and Windows Vista Applications.

Next, you have to attach the application manifest to the executable by adding a line in the
resource file of the application (the .rc file) to have Microsoft Visual Studio embed your
manifest within the resource section of the PE file. To accomplish this, place the
application manifest in the same directory as the source code for the project you are
building and edit the resource file to include the following lines:

#define MANIFEST_RESOURCE_ID 1
MANIFEST_RESOURCE_ID RT_MANIFEST "IsUserAdmin.exe.m anifest"

Replace IsUserAdmin.exe.manifest with the name of your application's manifest. After
rebuilding the application, the application manifest should be embedded in the resource
section of the executable.

Building and Embedding an Application Manifest with Microsoft
Visual Studio® 2005 for Windows XP and Windows Vist a Applications

In Visual Studio 2005, the C/C++ integrated development environment (IDE) interface
that permits the inclusion of additional manifest files in a target executable file does some
processing on the XML, which inserts a duplicate xmIns tag. Because of this, the
previously documented method on how to include an application manifest in a Visual
Studio 2005 C++ project cannot be used if the application should run on both Windows
Vista and Windows XP. The following procedures are modified to include explicit version
tags in the trustinfo section.

A fix is planned for the mt.exe tool to address the problem where it generates the
duplicate namespace declaration in the XML. Until a new version of mt.exe is available,
you can avoid the problem of merging application manifests by explicitly adding in version
tags into the trustinfo section of the manifest. A sample application manifest is shown
below:

<?xml version="1.0" encoding="UTF-8" standalone="ye s"?>
<assembly xmIns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
<ms_asmv2:trustinfo xmIns:ms_asmv2="urn:schemas- microsoft-com:asm.v2">

<ms_asmvz2:security>
<ms_asmv2:requestedPrivileges>

71

<ms_asmv2:requestedExecutionLevel level ="aslInvoker">
</ms_asmv2:requestedExecutionLevel>
</ms_asmv2:requestedPrivileges>
</ms_asmv2:security>
</ms_asmv2:trustinfo>
</assembly>

C or C++ Project

The following procedure details how to create an application manifest for a C or C++
project type in Visual Studio 2005.

I To create a manifest for a C or C++ project in Micr osoft Visual Studio 2005
1. Open your project in Microsoft Visual Studio 2005
2. Under Project, select Properties .
3. In Properties , select Manifest Tool , and then select Input and Output .
4

Add in the name of your application manifest file under Additional manifest
files.

5. Rebuild your application.

J Note

The updated manifests that include explicit version tags will permit the
application to run correctly on both Windows Vista and Windows XP.
Managed Code (C#, J# and Visual Basic)

Visual Studio does not currently embed a default application manifest into managed
code. For managed code, the developer should insert a default application manifest into
the target executable using mt.exe. The following procedure details this process.

[=To insert a default manifest file into the target e xecutable with mt.exe

1. Use atext editor, such as Windows Notepad, to create a default manifest file,
temp.manifest.

2. Use mt.exe to insert the manifest. The command would be: mt.exe —-manifest

temp.manifest —outputresource:YourApp.exe;#1

Adding the Application Manifest as a Step in Visual Studio Post-Build

Adding the application manifest can be automated as a post-build step as well. This
option is available for C/C++ and for the two managed code languages of C# and J#.

The IDE does not currently include a post-build option for a Visual Basic
application.

To automate the addition of the application manifest as a post-build step, place the
following line as a post build task in your Visual Studio project's Project Properties :

mt.exe -manifest "$(ProjectDir)$(TargetName).exe.ma nifest" -
updateresource:"$(TargetDir)$(TargetName).exe;#1"

Step Seven: Test Your Application

72

Next, you will need to test your redesigned or new application for application compatibility

with the Standard User Analyzer. A procedure detailing this process was described
earlier in this document in the Test Your Application for UAC Compatibility section.

Use the following workflow to test your application.

= To test your application for final UAC compatibilit y
1. Test the application with the Standard User Analyzer tool.

2. Log on to a Windows Vista computer as an administrator in Admin Approval

Mode and run your program. Ensure that you test all functionality and note the

user experience. File any elevation or user interface bugs accordingly.

3. Log on to a Windows Vista computer as a standard user and run your program.

Ensure that you test all functionality and note any differences or failures in the

standard user experience in comparison to the administrator in Admin Approval

Mode user experience. Record any elevation and user experience problems
accordingly.

Step Eight: Authenticode Sign Your Application

The application now contains an application manifest, which will be detected when the
application launches. The executable can, however, be tampered with. To prevent this,

you should sign the application with an Authenticode signature.

73

Windows Vista will have the ability to prevent any unsigned application from
launching with a full administrator access token. If you want your application to
operate correctly in locked-down environments, while displaying a more user
friendly user interface, it should be signed with an Authenticode signature.

To sign the application, you can either generate a certificate from makecert.exe or obtain
a code-signing key from one of the commercial certification authorities (CAs), such as
VeriSign, Thawte, or a Microsoft CA.

You will need a commercial certificate if you wish your application to be trusted
on the target computer of a customer installing your application.

If you use the makecert.exe file to generate your signing key pair, be aware that it only
generates a 1024-bit key. Authenticode signatures should have at least a 2048-bit key.
The makecert.exe file should only be used for testing purposes.

The following procedure details the high level requirements for using makecert.exe to
generate your signing key pair. An example and makecert.exe parameters follow this
procedure.

™ To use makecert.exe to generate your signing key pa ir
1. Generate the certificate.
2. Sign the code.

3. Install the test certificate.

Example Signing Procedure

The following procedures are provided as examples and are not intended to be strictly
followed. For example, replace the test certificate's name with your certificate's name and
ensure that you tailor the procedures to map to your specific CA and development
environment.

Step 1: Generate the certificate

makecert -r -pe -ss PrivateCertStore -n "CN=Contoso .com(Test)" ContosoTest.cer

74

makecert.exe parameters

Parameter Description

Ir Create self-signed certificate

Ipe Makes the certificate's private key
exportable to the signing machine.

/ss StoreName The certificate store name that will store the
test certificate. Example: PrivateCertStore

/n X500Name The certificate subject's X500 name.
Example: Contoso.com(Test)

CertificateName.cer Certificate name. Example:
ContosoTest.cer

Step 2: Sign the Code

@ Important

Applying a timestamp while signing your application will ensure that the
application will continue to run after the validity period of the original certificate.

Signtool sign /v /s PrivateCertStore /n Contoso.com (Test) /1t
http:/timestamp.verisign.com/scripts/timestamp.dll file.exe

Step 3: Install the Test Certificate

[=To install the test certificate

1.

o M N

o

Launch an elevated command window by right-clicking Command Prompt and
selecting Run as administrator

In Command Prompt , type mmc.exe and press Enter.
In the mmc, select File and then select Add/Remove Snap-in...
In Add or Remove Snap-ins , select Certificates , click Add, and then click OK.

In the Certificates snap-in dialog box, select Computer account and click
Next.

In Select Computer , select Local Computer , and then click OK.

In Add or Remove Snap-ins, click OK.

75

8. Inthe Certificates snap-in, and navigate to Trusted Root Certificate
Authorities , right-click Certificates , select All Tasks , and then select Import...

9. In the Certificate Import Wizard, import the test certificate, ContosoTest.cer.
For more information about Authenticode signatures, see MSDN:

Frequently Asked Questions about Authenticode
(http://go.microsoft.com/fwlink/?Linkld=71496).

Microsoft Authenticode Technology (http://go.microsoft.com/fwlink/?Linkld=71361).

Step Nine: Participate in the Windows Vista Logo Pr ogram

Microsoft offers the Windows Vista Logo program to help customers identify systems and
peripherals that meet a comprehensive baseline definition of platform features and quality
goals to ensure a great computing experience for users.

Preliminary guidelines for the UAC requirements for obtaining a Windows Vista Logo are
available at the Windows Vista Logo page (http:/go.microsoft.com/fwlink/?Linkld=71497).

Deploying and Patching Applications for
Standard Users

Generally, enterprises will have to consider how they will install applications on their
users’ workstations in an automated manner, thereby reducing administrative costs.
There are fundamentally two parts to this problem--first, how these applications should be
packaged for deployment and, second, what technology should be used to deploy them.
In the case of smaller enterprise environments, a robust, automated deployment
mechanism may not be necessary.

Assuming that the enterprise has already taken an inventory of the software that is run in
its environment, the next step is to repackage these applications for deployment.
Microsoft recommends the Windows Installer format because it has the unique ability to
separate managing per-user settings from per-machine settings. This type of
management generally is not possible with other packaging formats, especially
deployment executables that are simply run by an account with more privileges, such as
SYSTEM. The MSDN library (http://go.microsoft.com/fwlink/?Linkld=71498) contains
many articles on Windows Installer; one suggestion is the Roadmap to Windows Installer
documentation (http://go.microsoft.com/fwlink/?Linkld=71499).

The Windows Installer format includes the ability to user control the installation of these
applications through Group Policy (Microsoft® IntelliMirror) and also through SMS. To

76

enable Install on Demand with file extension or shortcuts, the following tables in the
Windows Installer—-based package must be populated with advertising data: Shortcut,
Extension, Icon, and Verb. It is recommended that you also populate class, MIME,
ProgID, and TypeLib. More information about IntelliMirror and Install on Demand is
available at MSDN (http://go.microsoft.com/fwlink/?Linkld=71492).

There are other installer technologies that allow applications to install per-user and
support auto-update, such as ClickOnce. This means that the installer will not require
administrator or higher privileges to install and that the user will always run the latest
version as long as the computer is connected to the network. It also places some limits
on an IT professional's ability to control the installation of these applications.

ClickOnce (http://go.microsoft.com/fwlink/?Linkld=71500) deployment is a Microsoft .NET
installation technology that automatically installs and configures a client-side application
when a user clicks an application manifest link, such as an application manifest in a Web
site, on a CD, or on a universal naming convention (UNC) path. By default, the
application will copy itself to the Temporary Internet Files folder and run within a
restricted environment.

Even if your application has been signed with the IT strong name that gives it Full
Trust, you still cannot do anything that requires administrator permissions, such
as access certain parts of the file system and registry. ClickOnce applications
however, are targeted as per-user applications, so this should not be a problem.

Important ClickOnce should not be used for deploying applications that perform
administrative operations.

Deploying to a Single Computer

To deploy an application for a single computer, the administrator must “publish” the
application on that computer.

Deploying to all users in a Domain

To advertise for all users in a domain, the administrator must “publish” the application
through Group Policy deployment. Currently, only the Group Policy—based software
deployment component of the Windows Server® 2003 operating systems and Windows®
2000 Server operating system takes advantage of this functionality.

77

Patching Applications as a Standard User with Windo WS
Installer 4.0

Standard user account patching enables Windows Installer package authors to identify
signed patches that can be applied by a future standard user. The following conditions
must be met to enable standard user patching with Windows Installer 4.0:

» The application was installed on using Windows Installer 4.0.
» The application was originally installed per-machine.

* The MsiPatchCertificate table is present and populated in the original Window
Installer package (.msi file).

» The patches are digitally signed by a certificate listed in the MsiPatchCertificate table.
» The patches can be validated against the digital signature.

» Standard user account patching has not been disabled by setting the
MSIDISABLELUAPATCHING property or the DisableLUAPatching policy.

Windows Installer 4.0 Standard User Uninstall Behav ior

The expected behavior for a Windows Installer 4.0 patch applied by a standard user is
that it can also be removed by the standard user.

Launching an Un-Elevated Application from an Elevat ~ ed Process

A frequently asked question is how to launch an un-elevated application from an elevated
process, or more fundamentally, how to | launch a process using my un-elevated token
once I'm running elevated. Since there is no direct way to do this, the situation can
usually be avoided by launching the original application as standard user and only
elevating those portions of the application that require administrative rights. This way
there is always a non-elevated process that can be used to launch additional applications
as the currently logged on desktop user. Sometimes, however, an elevated process
needs to get another application running un-elevated. This can be accomplished by
using the task scheduler within Windows Vista. The elevated process can register a task
to run as the currently logged on desktop user.

A C ++ code sample illustrating how to use the Task Scheduler to perform this operation
is available in the references section of this document.

78

Troubleshooting Common Issues

The following sections detail common issues encountered with applications in Windows
Vista.

Common issues include:

» ActiveX installation issues

» ActiveX documents do not install

» Application, framework, or add-in required

» Administrative permission is required for installation/patching

* Per-user application settings locations

» Application defaults to saving in a protected directory

ActiveX Installation Issues

ActiveX controls must be installed by an administrator. ActiveX controls are typically used
in LOB applications to extend Web browser capabilities to create more flexible user
interfaces or to elevate access to computer resources normally denied to applications
running within the Web browser. ActiveX controls are typically installed by embedding a
reference to the ActiveX control in a Web page. This will cause Microsoft Internet
Explorer® to download and install the control if it does not exist on the local computer.
Typically, ActiveX controls downloaded in this way reside in the %HOMEPATH%\Local
Settings\Temporary Internet Files directory, which is writable by standard users.
However, to function within Internet Explorer, the controls must have multiple-registry
entries, which standard users cannot access.

Resolution

Removing the ActiveX control from the application almost always results in a loss of
functionality. Therefore, this is not recommended for remediation unless the ActiveX
control is providing some visual or functional enhancement that is not part of the site's
core functionality. An example is a stock ticker on a non-stock—related portal.

In most cases, packaging the ActiveX control for installation by SMS or Group Policy is
the correct solution. However, most of the controls will not be included in the base image,
so Web sites must modify their pages to fail gracefully. This should comprise detecting
the missing ActiveX control and redirecting to the Managed Desktop software request

page.

79

ActiveX Documents Do Not Install

ActiveX documents are a deprecated technology from Microsoft Visual Basic® 4 and
Microsoft Visual Basic® 5. They can be downloaded in a similar way as ActiveX controls.

Resolution

Since Visual Basic 4 and Visual Basic 5 are deprecated, Microsoft recommends that you
replace the application. It should be possible to install the ActiveX document as part of a
client installation; however, updates to the document will be restricted without
redeployment through SMS or Group Policy.

Application, Framework, or Add-in Required

Many applications have dependencies on other software, which may not be installed by

default, either because they are already available on the computer or because the other

application does not provide distributable binaries for use by third parties. Under normal

circumstances, the user would be directed to acquire and install the additional software.

Under a managed desktop, installation is not possible. Examples include Adobe Acrobat,
Microsoft Office, Office Web components, and WinZip.

Resolution

Once the dependencies are identified, they can either be packaged with the base image
or made available through on-demand SMS installation. The application might have to
change how it notifies the end user of the missing software, directing the user to the SMS
installation site instead of to the manufacturer.

Administrative Permission is Required for
Installation/Patching

Since installation of a program requires adding files to the Program Files directory, it will
always require administrative permissions and, therefore, must be run as a user with
elevated permissions.

You can also "push" the patch with SMS or Group Policy in conjunction with the
Add or Remove Programs (ARP) control panel. In this method, the user selects
the software to install and the system installer completes the installation—the
user does not have to be an administrator. For initial installations, this can be
dealt with by packaging the software for an installation agent to push out.

80

However, some applications rely on frequent automatic updates that may not
align well with a centrally managed application model.

Applications that detect updates and attempt to apply patches will be unable to do so, as
they will not have permission to modify files in the system directories.

Resolution

» Package your application/patch for deployment with SMS. Applications can still
detect that an upgrade is available (as long as they do it without requiring
administrative permissions) and can redirect to the provisioning site.

* Question whether your application needs elevated computer permissions, such as file
system, registry access, or COM interoperability. If not, then it might be possible to
rewrite the application as a ClickOnce deployment package, which will run in the
Microsoft .NET sandbox.

« Convert to a Web application without any client-side dependencies.

Per-User Application Settings Locations

For Windows Vista, the application settings that need to be changed at run time should
be stored in one of the following locations:

e CSIDL_APPDATA

e CSIDL_LOCAL_APPDATA

¢ CSIDL_COMMON_APPDATA

Documents saved by the user should be stored in CSIDL_MYDOCUMENTS.

A user's Documents folder is no longer stored under Documents and Settings
In Windows Vista, a new root directory on the file system called Users now
contains the profiles for users of the computer.

Because these directories have changed, developers are encouraged to use CSIDLs to
locate the path to specific well-known directories in a system-independent way. For more
information, see the MSDN article on CSIDLs
(http://go.microsoft.com/fwlink/?Linkld=71501).

An application needs write access to the file system. When running under a managed
desktop, an application only has write permission to the following folders and their
children.

81

+ CSIDL_PROFILE
+ CSIDL_COMMON_APPDATA

Standard users cannot write to Users\Common.
e C:\Users\Common>cd "Application Data"
--C:\Users\Common\Application Data>echo File > File.txt
--C:\Users\Common\Application Data>
Applications should not attempt to write to other locations, such as the following:
* C:\Windows
* C:\Windows\System32
e Program Files\{application}

» C:\{application}

This will work if the user created the folder, which members of the Users group
can do by default.

An application is trying to specifically create C:\Users\Profiles\Username is not allowed
since the user can only create folders under C:\Users\Username. The location chosen
appears to be confused based on where Microsoft has stored the Documents folder on
previous versions of the operating system.

Application settings that need to be changed at run time should be stored in one of the
following locations:

« CSIDL_APPDATA

» CSIDL_LOCAL_APPDATA

» CSIDL_COMMON_APPDATA

Documents saved by the user should be stored in the CSIDL_MYDOCUMENTS folder.

All paths should not be hard-coded but should use the Environment.GetFolderPath()
function.

82

Application Defaults to Saving in a Protected Direc tory

Some applications allow users to save or export data to their local computer. Often, the
dialog box defaults to places like C:, to which standard users do not have write
permissions. In addition, some applications do not respond well when the code to write
the file fails because as a result of an access denied from the operating system.

Resolution

Assume that users can only write to their own profiles. For documents intentionally saved
by users, initialize the dialog boxes to start at Documents
(Environment.GetFolderPath(Environment.SpecialFolder.Personal). Remember that the
Save dialog box will allow a user to browse to other locations than the user's profile, so
the application should include logic to ensure that it fails gracefully if a user choose a
different directory than those located in his/her profile.

References

This section includes a virtualization reference and a security settings reference.
Virtualization Reference

File virtualization

» Virtualize (%SYSTEMROOT%, %PROGRAMDATA%,
%PROGRAMFILES%\(Subdirectories)

» Redirect to: %LOCALAPPDATA%\VirtualStore

» Excluded binary executables: .exe, .dll, .sys

Registry Virtualization:
+ Virtualize (HKEY_LOCAL_MACHINE\SOFTWARE)

* Redirect to:
HKEY_CURRENT_USER\Software\Classes\VirtualStore\MACHINE\SOFTWARE\<A
pplication Registry Keys>

» Keys excluded from virtualization

« HKEY_LOCAL_MACHINE\Software\Classes

83

 HKEY_LOCAL_MACHINE \Software\Microsoft\Windows
+ HKEY_LOCAL_MACHINE \Software\Microsoft\Windows NT

Applicability

* Virtual stores do not roam

» Corresponding global objects would not roam
« Enabled only for interactive standard users

» Disabled for non-interactive processes

» Disabled for 64-bit executables

» Disabled for executables that request an execution level (requestedExecutionLevel)
in their application manifest, the model for separation

» Disabled for kernel mode and impersonated callers

* Only administrator writeable registry keys and files are virtualized

UAC Security Settings Reference

This reference details the security settings available to administer UAC with Group Policy
or the computer's local security policy.

The procedures presented in this section are intended for administering
unmanaged computers. To use Group Policy to administer the settings centrally
in a managed environment, use Active Directory Users and Computers (dsa.msc)
instead of local Security Policy Manager snap-in (secpol.msc).

Configuring UAC Security Settings

The following procedure details how to configure the UAC security settings with the
Security Policy Manager. The procedure details the default user experience for an
administrator in Admin Approval Mode.

= To view/set the UAC security settings with Security Policy Manager

1. Click the Start button, type secpol.msc into the search box, and then press
Enter.

2. Atthe User Account Control consent prompt, click Continue .

3. InLocal Security Settings , expand Local Policies , and then click Security
Options .

4. Right-click the security setting that you would like to change and select
Properties .

The following procedure details how to configure the UAC security settings with the
Group Policy. The procedure details the default user experience for an administrator in
Admin Approval Mode.

[=To view/set the UAC security settings with the Grou p Policy Object Editor

1. Click the Start button, type gpedit.msc into the search box, and then press
Enter.

2. Atthe User Account Control consent prompt, click Continue .

3. In Group Policy , expand User Configuration , and then expand Security
Options .

4. Right-click the security setting that you would like to change and select
Properties .

UAC Security Settings

The following table lists the configurable UAC security settings. These settings can be
configured with the Security Policy Manager (secpol.msc) or managed centrally with
Group Policy (gpedit.msc).

84

UAC settings

85

Setting

Description

Default Value

User Account Control:

Admin Approval Mode for
the Built-in Administrator

account.

There are two possible settings:

« Enabled - The built-in
Administrator will be run as
an administrator in Admin
Approval Mode.

* Disabled - The administrator
runs with a full administrator
access token.

Disabled for new
installations and for
upgrades where the
built-in Administrator
is NOT the only local
active administrator
on the computer. The
built-in Administrator
account is disabled
by default for
installations and
upgrades on domain-
joined computers.

Enabled for upgrades
when Windows Vista
determines that the
built-in Administrator
account is the only
active local
administrator on the
computer. If Windows
Vista determines this,
the built-in
Administrator account
is also kept enabled
following the

upgrade. The built-in
Administrator account
is disabled by default
for installations and
upgrades on domain-
joined computers.

86

Setting

Description

Default Value

User Account Control:

Behavior of the elevation
prompt for administrators
in Admin Approval Mode

There are three possible values:

No prompt — The elevation
occurs automatically and
silently. This option allows an
administrator in Admin
Approval Mode to perform an
operation that requires
elevation without consent or
credentials. Note: this
scenario should only be used
in the most constrained
environments and is NOT
recommended.

Prompt for consent — An
operation that requires a full
administrator access token
will prompt the administrator
in Admin Approval Mode to
select either Continue or
Cancel. If the administrator
clicks Continue , the
operation will continue with
their highest available
privilege.

Prompt for credentials — An
operation that requires a full
administrator access token
will prompt an administrator
in Admin Approval Mode to
enter an administrator user
name and password. If the
user enters valid credentials,
the operation will continue
with the applicable privilege.

Prompt for consent

87

Setting

Description

Default Value

User Account Control:
Behavior of the elevation
prompt for standard users

There are two possible values:

No prompt — No elevation
prompt is presented and the
user cannot perform
administrative tasks without
using Run as administrator
or by logging on with an
administrator account. Most
enterprises running desktops
as standard user will
configure the “No prompt”
policy to reduce help desk
calls.

Prompt for credentials — An
operation that requires a full
administrator access token
will prompt the user to enter
an administrative user name
and password. If the user
enters valid credentials the
operation will continue with
the applicable privilege.

e« Home: Prompt for
credentials

e Enterprise: No
prompt

88

Setting

Description

Default Value

User Account Control:
Detect application
installations and prompt
for elevation

There are two possible values:

« Enabled - The useris
prompted for consent or
credentials when Windows
Vista detects an installer.

« Disabled - Application
installations will silently fail or
fail in a non-deterministic
manner. Enterprises running
standard users desktops that
leverage delegated
installation technologies like
GPSI or SMS will disable this
feature. In this case, installer
detection is unnecessary and
therefore not required.

Enabled

User Account Control:
Only elevate executables
that are signed and
validated

There are two possible values:

« Enabled - Only signed
executable files will run. This
policy will enforce PKI
signature checks on any
interactive application that
requests elevation.
Enterprise administrators
can control the
administrative application
allowed list through the
population of certificates in
the local computers Trusted
Publisher Store.

e Disabled - Both signed and
unsigned code will be run.

Disabled

89

Setting

Description

Default Value

User Account Control:
Only elevate UlAccess
applications that are
installed in secure
locations

There are two possible values:

¢ The system will only give
UlAccess privileges and user
rights to executables that are
launched from under
%ProgramFiles% or
%windir%. The ACLs on
these directories ensure that
the executable is not user-
modifiable (which would
otherwise allow elevation of
privilege). UlAccess
executables launched from
other locations will launch
without additional privileges
(i.e. they will run
"aslnvoker").

« Disabled - The location
checks are not done, so all
UlAccess applications will be
launched with the user's full
access token upon user
approval.

Enabled

90

Setting

Description

Default Value

User Account Control:
Run all administrators in
Admin Approval Mode

There are two possible values:

¢ Enabled - Both
administrators and standard
users will be prompted when
attempting to perform
administrative operations.
The prompt style is
dependent on policy.

« Disabled - UAC is essentially
"turned off" and the AIS
service is disabled from
automatically starting. The
Windows Security Center will
also notify the logged on
user that the overall security
of the operating system has
been reduced and will give
the user the ability to self-
enable UAC.

Note: Changing this setting will
require a system reboot.

Enabled

User Account Control:
Switch to the secure
desktop when prompting
for elevation

There are two possible values:

e Enabled - Displays the UAC
elevation prompt on the
secure desktop. The secure
desktop can only receive
messages from Windows
processes, which eliminates
messages from malicious
software.

« Disabled - The UAC
elevation prompt is displayed
on the interactive (user)
desktop.

Enabled

91

Setting

Description

Default Value

User Account Control:
Virtualize file and registry
write failures to per-user
locations

There are two possible values:

Enabled - This policy
enables the redirection of
pre-Windows Vista
application write failures to
defined locations in both the
registry and file system. This
feature mitigates those
applications that historically
ran as administrator and
wrote runtime application
data back to
%ProgramFiles%;
%Windir%;
%Windir%\system32; or
HKLM\Software\.... This
setting should be kept
enabled in environments that
utilize non-UAC compliant
software. Applications that
lack an application
compatibility database entry
or a requested execution
level marking in the
application manifest are not
UAC compliant.

Disabled - Virtualization
facilitates the running of pre-
Windows Vista (legacy)
applications that historically
failed to run as a standard
user. An administrator
running only Windows Vista
compliant applications may
choose to disable this
feature as it is unnecessary.
Non-UAC compliant
applications that attempt to
write %ProgramFiles%;
%Windir%;
%Windir%\system32; or
HKLM\Software\.... will
silently falil if this setting is
disabled.

Enabled

92

Modifying the User Account control: Run all administrators in Adm in
Approval Mode setting will require a computer restart before the setting
becomes effective. All other UAC Group Policy settings are dynamic and do not

require a reboot.

Task Scheduler Code Sample

The following C++ code sample illustrates how to use Task Scheduler to run an un-
elevated application as the currently logged on desktop user from an elevated process.
This method works for both the consent prompt and the credential prompt.

I
/I This file is part of the Microsoft .NET Framewo

1

/I Copyright (C) Microsoft Corporation. All right

1

/[This source code is intended only as a supplement
/IDevelopment Tools and/or on-line documentation.
/Imaterials for detailed information regarding Micr

1

rk SDK Code Samples.
s reserved.
to Microsoft

See these other
osoft code samples.

/ITHIS CODE AND INFORMATION ARE PROVIDED AS ISWITH OUT WARRANTY OF ANY
/IKIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
/NIMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITN ESS FOR A
/IPARTICULAR PURPOSE.

Jlommmm s e

/
* Main.cpp - Sample application for Task Scheduler V2 COMAPI *
Component: Task Scheduler

* Copyright (c) 2002 - 2003, Microsoft Corporation
* This sample creates a task to that launches as th
user. The task launches as soon as it is registered

*

e currently logged on deskup

#include "stdafx.h"
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <comdef.h>
#include <comutil.h>
/linclude Task header files - Included in Windows V
#include <taskschd.h>
#include <conio.h>
#include <iostream>
#include <time.h>

ista Beta-2 SDK from MSDN

using hamespace std;

#define CLEANUP \

pRootFolder->Release();\
pTask->Release();\
CoUninitialize();

HRESULT CreateMyTask(LPCWSTR, wstring);

void __cdecl wmain(int argc, wchar_t** argv)
{

wstring wstrExecutablePath;

WCHAR taskName[20];

HRESULT result;

if(argc <2)

{

printf("\nUsage: LaunchApp yourapp.exe");
return;

}

/I Pick random number for task name
srand((unsigned int) time(NULL));
wsprintf((LPWSTR)taskName, L"Launch %d", rand());

wstrExecutablePath = argv[1];

result = CreateMyTask(taskName, wstrExecutablePath)
printf("\nReturn status:%d\n", result);

}
HRESULT CreateMyTask(LPCWSTR wszTaskName, wstring w

{
1
/I Initialize COM.
TASK_STATE taskState;
inti;
HRESULT hr = ColnitializeEx(NULL, COINIT_MULTIT
if(FAILED(hr))
{
printf("\nColnitializeEx failed: %x", hr);
return 1;

/I Set general COM security levels.
hr = ColnitializeSecurity(
NULL,
_1,
NULL,
NULL,
RPC_C_AUTHN_LEVEL_PKT_PRIVACY,

strExecutablePath)

HREADED);

93

RPC_C_IMP_LEVEL_IMPERSONATE,
NULL,

0,

NULL);

if(FAILED(hr))

{
printf("\nColnitializeSecurity failed: %x",
CoUninitialize();
return 1;

1
/I Create an instance of the Task Service.
ITaskService *pService = NULL;
hr = CoCreatelnstance(CLSID_TaskScheduler,
NULL,
CLSCTX_INPROC_SERVER,
IID_ITaskService,
(void**)&pService);
if (FAILED(hr))
{
printf("Failed to CoCreate an instance of t
CoUninitialize();
return 1;

/I Connect to the task service.
hr = pService->Connect(_variant_t(), _variant_t

_variant_t());

if(FAILED(hr))
{
printf("ITaskService::Connect failed: %x",
pService->Release();
CoUninitialize();
return 1;

1
/I Get the pointer to the root task folder. T
/I new task that is registered.
ITaskFolder *pRootFolder = NULL;
hr = pService->GetFolder(_bstr_t(L"\") , &pR
if(FAILED(hr))
{
printf("Cannot get Root Folder pointer: %x"
pService->Release();
CoUninitialize();
return 1;

hr);

he TaskService class

(), _variant_t(),

hr);

his folder will hold the

ootFolder);

,hr);

1 %x", hr);

94

/I Check if the same task already exists. If t
hr = pRootFolder->DeleteTask(_bstr_t(wszTaskN

/I Create the task builder object to create th
ITaskDefinition *pTask = NULL;
hr = pService->NewTask(0, &pTask);

pService->Release(); // COM clean up. Pointer
if (FAILED(hr))
{
printf("Failed to CoCreate an instance of t
pRootFolder->Release();
CoUninitialize();
return 1;

1
/I Get the trigger collection to insert the re
ITriggerCollection *pTriggerCollection = NULL;
hr = pTask->get_Triggers(&pTriggerCollection)
if(FAILED(hr))
{

printf("\nCannot get trigger collection: %x

CLEANUP
return 1;

/I Add the registration trigger to the task.
ITrigger *pTrigger = NULL;

hr = pTriggerCollection->Create(TASK_TRIGGER_R
pTriggerCollection->Release(); // COM clean up
if(FAILED(hr))
{
printf("\nCannot add registration trigger t
CLEANUP
return 1;
}
pTrigger->Release();

1
/I Add an Action to the task.

IExecAction *pExecAction = NULL;
IActionCollection *pActionCollection = NULL;

/I Get the task action collection pointer.

hr = pTask->get_Actions(&pActionCollection);
if(FAILED(hr))

{

printf("\nCannot get Task collection pointe

he same task exists, remove it.
ame), 0);

e task.

is no longer used.

he TaskService class: %x", hr);

gistration trigger.

", hr);

EGISTRATION, &pTrigger);
. Pointer is no longer used.

o the Task %x", hr);

r: %x", hr);

95

CLEANUP
return 1;

/I Create the action, specifying that it is an
lAction *pAction = NULL;
hr = pActionCollection->Create(TASK_ACTION_EXE
pActionCollection->Release(); // COM clean up.
if(FAILED(hr))
{
printf("\npActionCollection->Create failed:
CLEANUP
return 1;

hr = pAction->QueryInterface(1ID_IExecAction,
pAction->Release();
if(FAILED(hr))
{
printf("\npAction->QueryInterface failed: %
CLEANUP
return 1;

/I Set the path of the executable to the user
hr = pExecAction->put_Path(_bstr_t(wstrExecuta

if(FAILED(hr))
{
printf("\nCannot set path of executable: %x
pExecAction->Release();
CLEANUP
return 1;

}

hr = pExecAction->put_Arguments(_bstr_t(L™)

if(FAILED(hr))
{
printf("\nCannot set arguments of executabl
pExecAction->Release();
CLEANUP
return 1;

1
/I Save the task in the root folder.
IRegisteredTask *pRegisteredTask = NULL;
hr = pRootFolder->RegisterTaskDefinition(
_bstr_t(wszTaskName),
pTask,
TASK_CREATE,

executable action.

C, &pAction);

Pointer is no longer used.

%x", hr);

(void**) &pExecAction);

X", hr);

supplied executable.
blePath.c_str()));

" hr);

e: %x", hr);

96

_variant_t(_bstr_t(L"S-1-5-32-545")),//Well Known

_variant_t(),
TASK_LOGON_GROUP,
_variant_t(L™"),
&pRegisteredTask);
if(FAILED(hr))
{
printf("\nError saving the Task : %x", hr)
CLEANUP
return 1;
}
printf("\n Success! Task successfully registere
for (i=0; i<100; i++)//give 10 seconds for the
{
pRegisteredTask->get_State(&taskState);
if (taskState == TASK_STATE_RUNNING)
{
printf("\nTask is running\n");
break;
}
Sleep(100);

}
if (i>= 100) printf("Task didn't start\n");

//Delete the task when done
hr = pRootFolder->DeleteTask(
_bstr_t(wszTaskName),
NULL);
if(FAILED(hr))
{
printf("\nError deleting the Task : %x", hr
CLEANUP
return 1;

}

printf("\n Success! Task successfully deleted.

/I Clean up.
CLEANUP
CoUninitialize();
return O;

SID for \\Builtin\Users group

d.");
task to start

97

