
A Tour of Babel: Introduction

Justin Kenworthy
darknexus87@gmail.com

January 8, 2010

Contents

1 Overview 1

2 Language Features 2
2.1 History and Influence . 2
2.2 Platform, License, and Support 3
2.3 Performance and Stability . 3
2.4 Syntax . 3
2.5 Power and Usage . 4
2.6 Typing System . 4
2.7 Paradigm . 4
2.8 Standard Library and Data Structures 5

1 Overview

This series of articles will cover various popular programming languages. Its
purpose is to give a tour of each of the covered languages so that developers
may better understand why they might choose those languages for development.
As the title of the series implies, this is a tour of a world which offers many dif-
ferent languages for an equally diverse variety of application areas. It should be
understood that there are countless numbers of programming languages (cour-
tesy of academia) so there is no way (or reason) to cover them all. The definition
of ”popular” for this context should be accepted as those languages which are
main-stream so to speak. Although there are plenty of obscure (and possibly
exciting) languages to tour, I leave that to the reader to accomplish on their
own.

I would like to offer a list of the languages to be covered in the series, however
I really cannot provide it. At this point I have a few languages I would like to
dig into but it will mostly be based on my availability of time and interest. I

1

hope for this to be a continuing project so I am guessing I will end up covering
quite a few languages after a while (if that helps you gauge my intended bredth).

These articles assume your background knowledge of programming is at least
modreately experienced. I assume you are comfortable with at least one or two
programming langauges already and that you have, at least, some experience in
developing small to medium sized applications. For those topics which are more
advanced I may devote more time to explaining some fundamental concepts
before delving into the pertaining features of a language. If you have absolutely
no programming experience then, at the very least, you can get a feel for the
languages covered.

These tours are by no means exhaustive and serve to give an overview of
the important features of each language as well as those features which set
them apart from other languages. Of course, the reader must understand that
that these tours are bound to be founded on a subjective experience with each
language. I will try to keep my analysis as objective as possible but this is very
difficult to completley achieve. It is up to the reader to make the final decision
as to whether they view a language to be useful, for whatever purpose.

2 Language Features

Before we start touring languages let us first discuss what major components of
languages are important to consider. There are many different ways to compare
programming languages but perhaps the most common (and important) are the
history and influence; performance and stability; platform, license, and support;
syntax; power and usage; typing systems; paradigms; and data structures, and
standard libraries. Of course, more will be covered depending on each language
and the feature set each has to offer. For each article, however, these topics will
comprise the major framework for the analysis of each language so to offer some
degree of consistency throughout the series.

Some readers may be wondering why the chosen language components are
important. I will devote a little time to talking about why, as a developer, you
should be concerned with each of the selected components.

2.1 History and Influence

Although the history of a programming language may not seem immediately
important, it is. Not only are the histories of most languages semi-interesting,
we can also learn a lot by understanding what influenced the design decisions of
those languages. The most obvious impact of a language’s influences is in the
area of syntax. Languages (like Python, Ruby, Java, etc.) borrow their syntactic
flavor from influential predecessors (like C, Perl, Lisp, etc.). Understanding a
language’s influential predecessors can also greatly expedite the learning process
which often involves memorizing syntactic structures. By better understading
the origins of a language we can better understand its ultimate goal.

2

2.2 Platform, License, and Support

The topic of platforms is fairly straightfoward but still very important. The
operating system and architecture of a target machine seriously impact the
languages that we can develop with. Most of the main stream languages are
multi-platform so there is no worry there but sometimes we can run into trouble.

Licensing and support are incredibly important when it comes to deciding
how and when to use a language. If the license is free-software-like then we
can guess the language will be fairly solid in both design and stability. Because
these languages are under the scruitiny of public and peer review, they progress
rapidly and for the better (hopefully). The community or company which sup-
ports a given language is also very important. Developers are less likely to use
a language if little support is available. We are all bound to get stuck at some
point and without proper support in place we might just stay stuck.

2.3 Performance and Stability

The maturity of a language is generally directly linked to its popularity, stability,
security, and effeciency. The more mature a language becomes, the more it is
used and therefore the more mature the compilers and interpreters become as
well. The maturity of a language is also directly related to the design of the
language. Take for instance Python 3.0 which is fixing many of the design flaws
from previous versions of the language. A language’s age also says a lot about
the community which supports it. By discussing the maturity of a language we
can better decide how seriously we should treat it. Is it a scripting language
or a fully fledged programming language? Can we produce production quality
software with it or is it better used for less critical development?

Performance and stability are topics which must be taken into consideration.
Depending on the deployment environment and usage, a piece of software may
need to be lightning fast and rock solid stable. On the other end of the spectrum
we have sluggish and possibly unreliable. Either way a decision has to be made
concerning the performance of a language and how it will affect the software
and the user.

This section in language tours will most likely contain benchmarks to some
extent and some research on stability. Because these traits are often more
emperical than the others I will try my best to present reliable statistics.

2.4 Syntax

Syntax is fairly straightforward in some regards, but more complex than you
might think in others. Once you learn the syntax of one language, all languages
in the same paradigm only differ by syntax (for the most part). For this compo-
nent we will discuss common syntactic structures such as flow control, functions,
classes, mathematical expressions, and so on. Is the syntax tedious and difficult
to read or does it flow because it is full of syntactic sugar? Is the syntax concise
and powerfull or verbose and weak? Does the syntax compliment the applica-

3

tion area for the language? All of these questions, and more, are important to
consider when analyzing syntax. Although syntax may seem straightforward
it is often times what makes or breaks a language in main stream usage. For
instance, many developers cannot stand the whitespace aspect of Python, while
others cannot live without the many parenthesis of Lisp (and vice versa).

2.5 Power and Usage

This section will address the unique and ”powerful” features of languages, what-
ever that may be. This is where the interesting and truly useful features of
languages will be discussed. Things like clever introspection, lambda expres-
sion trickery, safetey mechanisms, etc., will be covered. Some languages are far
more powerful than others (for instance high level in comparison to low level
languages). This will probably be the most subjective portion of each article
for obvious reasons. Expect to see lots of code in these sections as my goal will
be to showcase the usefulness and semantic power of the languages in question.

2.6 Typing System

The typing system of a language defines how data and objects (not strictly in
the OO sense) interact with each other. This is a crucial aspect of any language
as it directly correlates to the saftey, stability, and power of the language. Not
all typing systems are created equal. Each language’s take on type theory
changes the way we model problems and solutions. Dynamic or static? Weak
or strong? nominative or structural? Types are something most developers
take for granted but are the area where most languages have an opportunity to
truly shine. If we do not fully understand a language’s typing system then we
do not fully understand the language, or at the very least we cannot recognize
its full potential. This section will be one of the most technical and theoretical
of the feature sections as it directly relates to the principles of programming
languages.

2.7 Paradigm

A language’s paradigm is important in many of the same ways as typing systems,
except in a much larger way. A language’s paradigm completely controls how
we can model problems and solutions. The two most popular in modern times
are declarative and imperative. These are both very broad terms but what we
really need to know for know is that they are opposed. Declarative paradigms
give developers a way to describe what needs to achieved rather than how.
Imperative paradigms are just the opposite: they allow developers to describe
how rather than what. Most languages are not strictly pure in their paradigms
and in fact offer a variety of paradigms to choose from. For example, Python is a
muli-paradigm language which offers flavors of both declarative and imperative
programming as well as some nifty meta-programming.

4

This section will discuss which paradigms a language offers as well as how
those paradigms co-exist (or don’t) to achieve their intended goals. This section,
like typing systems, will also be fairly technical. Paradigms, also like typing sys-
tems, are pretty intresting so the technicality will not be without reward. The
better developers can grasp the functionality (no pun intended) of their cho-
sen language’s paradigm, the better they can rapidly develop elegant solutions.
There’s nothing worse than fighting against a paradigm so this is one of the
most important aspects when it comes to programming languages.

2.8 Standard Library and Data Structures

Standard libraries and data structures make languages easier to apply. If lan-
guages come packaged with a rich toolset then developers are going to be far
more likely to use those ”batteries included” languages over languages with less
impressive collections. If we are able to determine how rich a language’s in-
cluded toolset is we can determine the sort of applications the language is best
suited for. Some languages, like Python and Ada, have collosal libraries backing
them. Other languages, like C, offer fewer and less useful standard libraries.

Data structures are incredibly important (more so than libraries) so most
of this section will be devoted to that aspect of a language toolsets rather than
libraries. The ability to create new data structures and use existing built-in
types is where most developers start when deciding which language is best for
the task at hand. This section should give you a good idea of what you will
have to work with in the sense of standard libraries and included utilities.

5

