Introduction to Win32
by Martin Bakiev

I. Introduction

II. Your Fist Win32 Application

III. Simple Window

IV. Drawing Text and Painting
V. Controls
I. Introduction

Before you begin this tutorial there are some things you must know, in order to understand this tutorial. You must understand:

C++ Syntax

Functions

Classes/Structures

Switch case

You also need to have some experience with non-Win32 programming. This tutorial is oriented for complete beginners or programmers new to Win32. I am hoping to introduce to you a whole new world of programming. In Win32 there are a lot of new concepts. So if you don’t understand them, re-read them. I will try to make everything as simple as possible. A really good book for learning Win32 programming is “Programming Windows 5th edition” by Charles Petzold.

II. Your First Program

I’ve always liked seeing a piece of code work, and then learning how it works. So I will show you the code first.

*Make sure you have created a Win32 Project, not Win32 Console Project, or you’ll get a few errors such as:

1>LIBCMT.lib(crt0.obj) : error LNK2019: unresolved external symbol _main referenced in function ___tmainCRTStartup

First Win32 Program:

#include <windows.h>

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

MessageBox(NULL, "Hello World!", "Hello World", MB_OK);

return 0;

}

You might be thinking something like “Well it doesn’t seem too hard, as people’ve said”. Well this is as simple as Win32 gets. So lets look at the code now.

In DOS programming you use to include iostream for the basic input, output and a some other functions. In Win32 you include windows.h (make sure you remember that). In DOS programming you use to have:

int main(void)

Or

int main(int argc, char *argv[])

Now in Win32 you have:

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPSTR lpCmdLine, int iCmdShow)// Cannot be overloaded
Now you are probably thinking something like “I’m lost, why so many things are unfamiliar?!”. Well there are a lot of capitalized stuff in Win32, but don’t be scared, youll get used to it, and yes, this is quite a long declaration for WinMain, and you have to remember it, because, unlike int main(), it cannot be overlaoded.

The idea behind WinMain is basicaly the same as the main, and that is to start execution of code from here. It also returns an integer, like main. Now you might be wondering what “WINAPI”, “HINSTANCE” and “LPSTR” are. Well WINAPI is defined in WINDEF.h like this:
#define WINAPI _stdcall
This statement specifies a calling convention that involves how machine code is generated to place function call arguments on the stack. Most Windows functions are declared as WINAPI.

The first argument of WinMain is

HINSTANCE hInstance

Its called “instance handle”. In Windows programming a handle is simple a number that an application uses to identify something. In this case it identifies the program. The second parameter

HINSTANCE hPrevInstance

Was used in earlier version of Windows. When you run the same program more than ones you created multiple instances. The two programs shared code and read-only memory (resources such as menus, templates for dialog boxes, etc..). The program could check if other instances of itself were running by checking the hPrevInstance. But in 32-bit version of windows this is no longer used, the 2nd parameter is always NULL (0).

The third parameter is

LPSTR lpCmdLine
you probably have not seen this until now. What it really is is a “long pointer to a zero terminated string” L for long, P for pointer and STR for string (C style string, which is an array of chars, because this is really part of C, not C++). Put together they create LPSTR. In 32-bit version of Windows the 3rd parameter is defined as PSTR a lot of times, because there is no need for a long pointer, but the idea is the same.You may’ve also noticed that all the variables have a prefixes (h, lp and i). h stands for handle, lp for long pointer, i for integer. This is known as hungarian notation. Programmers put hungarian notations on their variables to know what type the variable is. For example if the variable has a prefix of sz (zero terminated string) they’ll know that the variable is probably defined as an array of chars. This helps out somewhat. I myself don’t really use hungarian, but I will try to do so through this tutorial.

Now inside WinMain we only make one call, MessageBox that is:

MessageBox(NULL, “Hello World!”, “Hello World”, MB_OK);

The MessageBox function is designed to show short messages (such as errors, or warning) to the user. It is a dialog box, can’t really do much with it though.

The first parameter to the function is usually the handle to the window (don’t worry about it for now, it will be explained later). It can be NULL. The second parameter is the text that will be in the body of the dialog. In this case “Hello World!”. The third paramter is the Title of the dialog box. That is the text that will be displayed in the title bar of the dialog. And the last parameter can be combination of constants with prefix of MB_ (MessageBox). You can find other flags that can be used here:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/dialogboxes/dialogboxreference/dialogboxfunctions/messagebox.asp
When you combine one or more flags you do so like this:

MB_OK | MB_ICONERROR

This will create add an Error Icon on the left side off the dialog.

The last part of the program is

return 0; /*Not even going to explain it, if you don’t know what it does, then you shouldn’t be learning about Win32. */

III. Simple Window

Now its time to create a simple window. Here is the code for it:

#include <windows.h>

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR szCmdLine, int nShowCmd)

{

static char name[] = "My Application";

WNDCLASSEX wc;

HWND hwnd;

MSG Msg;

//Step 1: Registering the Window Class

wc.cbSize

 = sizeof(WNDCLASSEX);

wc.style

 = CS_HREDRAW | CS_VREDRAW;

wc.lpfnWndProc
 = WndProc;

wc.cbClsExtra
 = 0;

wc.cbWndExtra
 = 0;

wc.hInstance
 = hInstance;

wc.hIcon

 = LoadIcon(NULL, IDI_APPLICATION);

wc.hCursor

 = LoadCursor(NULL, IDC_ARROW);

wc.hbrBackground = (HBRUSH) (COLOR_WINDOW+1);

wc.lpszMenuName = NULL;

wc.lpszClassName = name;

wc.hIconSm

 = LoadIcon(NULL, IDI_APPLICATION);

if(!RegisterClassEx(&wc))

{

MessageBox(NULL, "Window Registration Failed!",
"Registration Failure",

MB_ICONEXCLAMATION | MB_OK);

return 0;

}

// Step 2: Creating the Window

hwnd = CreateWindowEx(

WS_EX_CLIENTEDGE,

name,

"My First Window",

WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT, CW_USEDEFAULT, 400, 400,

NULL, NULL, hInstance, NULL);

ShowWindow(hwnd, nShowCmd);

UpdateWindow(hwnd);

// Step 3: The Message Loop

while(GetMessage(&Msg, NULL, 0, 0) > 0)

{

TranslateMessage(&Msg);

DispatchMessage(&Msg);

}

return (int)Msg.wParam;

}

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg,
WPARAM wParam, LPARAM lParam)

{

switch(msg)

{

case WM_CLOSE:

DestroyWindow(hwnd);

break;

case WM_DESTROY:

PostQuitMessage(0);

break;

}

return DefWindowProc(hwnd, msg, wParam, lParam);

}

In Windows, things work a bit different from a DOS. In dos you specify how the program is going to run, and the order. And everything runs just as you expect it to do. But with the introduction of windows programming you get introduced to “Event driven programming”. In windows, things don’t go in the order you always want them to go. In Windows the user chooses the order in which things will run. Your program is now driven by events, or things that the user does. You have to tell the program what to do for every action the user does. If, for example, the user pushes a button. You have to have the program ready to do something, when and if the user does so. How do I know when the user has pressed the button? Windows sends a message to your program. The message contains everything you need to know. Depending on the message you’ll do what is necessary (well look this in depth later). For every action there has to be a reaction. Having said that, lets look at how the program works.

First we have delcared some variables in the scope of WinMain.

static char name[] = "My Application";

WNDCLASSEX wc;

HWND hwnd;

MSG Msg;

The first one you already know what it is. It’s an array of characters, that holds “My Application”. The second one is a window class structure. This structure holds some (not all) properties of your program (such as icons, cursors, background color, menu and the window procedure). Later in the program we will register it, and use it to create the the window. The 3rd variable is HWND, which is a handle to a window. And the last one is a message structure. When Windows sends a message the message is stored in this structure and processed by the Window Procedure (well look this in depth later).

Now we define the Window Class sturcture (wc).

wc.cbSize

 = sizeof(WNDCLASSEX);

wc.style

 = CS_HREDRAW | CS_VREDRAW;

wc.lpfnWndProc
 = WndProc;

wc.cbClsExtra
 = 0;

wc.cbWndExtra
 = 0;

wc.hInstance
 = hInstance;

wc.hIcon

 = LoadIcon(NULL, IDI_APPLICATION);

wc.hCursor

 = LoadCursor(NULL, IDC_ARROW);

wc.hbrBackground
= (HBRUSH) (COLOR_WINDOW+1);

wc.lpszMenuName = NULL;

wc.lpszClassName = name;

wc.hIconSm

 = LoadIcon(NULL, IDI_APPLICATION);

First one is cbSize. This variable stores the size of the structure. Always set it to sizeof(WNDCLASSEX).

Second one is style. This specifies how the window looks. In our case we’ve specified that we want the entire window repained if it is moved or resized verticaly or horizontaly. More styles can be found here:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/windowclasses/aboutwindow.asp
Thrid member of WNDCLASSEX is lpfnWndProc. This is a pointer to a function. But not just any function. This has to be set to the Window Procedure function. (Well look at the Window Procedure Function later on).

The Fourth member is cbClsExtra. This one specifies the number of bytes extra to allocate. Should be 0.

The Fifth member is cbWndExtra. This specifies the number of bytes extra to allocate. Should be 0.
The Sixth member is hInstance. This is the instance handle, passed to WinMain.

The Seventh member is hIcon. This is a handle to an Icon to be used for the program. If you have an icon to be used for the program, you would use LoadIcon. None in this case.

The Eight member is hCursor. This is a handle to a Cursor to be used instead of the Windows arrow. In this case we will use the default Windows arrow.

The Ninght member is hbrBackground. This is a handle to a brush to be used to paint the background of the window. If you want to change the color to your own custom color you can use CreateSolidBrush(RGB(r, g, b)); this function returns a brush with the color specified. Use the RGB macro to create the color you want. RGB takes 3 arguments. They can only be of values between 0, and 255. First one is the Red, second is the Green, and Third is the Blue. You can use a program such as MS Paint to get the color you want and check the RGB values. You can put a bitmap for the background using CreatePatternBrush(HBITMAP hbmp). Youll need to have the image in a resource files to be able to use this, and I will not be going into resource files in this tutorial. But if you really want to use it, check it out on MSDN library.
The Tenth member is lpszMenuName. This is a long pointer to a zero terminated string. This is where you would specify the menu you want to use for the program if you had one. Again this goes into resource files, and will not be discussing them. NULL can be used if none.

The Eleventh member is lpszClassName. This is a long pointer to a zero terminated string. This specifies the class name. For this one we will use the static array of characters we defined in the beginning of the program.

The Twelfth member is hIconSm. This is a handle to an Icon. This icon is used for the upper left corner of the window. The hIcon one is used for how the file will look when you are looking at it in explorer, and when you use ALT + TAB to switch between windows.

This concludes the initialization of the WNDCLASSEX. Next we have to register the class. We do so by calling this piece of code:

if(!RegisterClassEx(&wc))

{

MessageBox(NULL, "Window Registration Failed!",

"Registration Failure", MB_ICONEXCLAMATION | MB_OK);

return 0;

}

The function RegisterClassEx() registers the Window Class structure. We use a if statement to check if the function succeeds. If it fails we tell the user that it has, and quit. This usually will happen on Win98 and older.
If everything has gone fine so far then we create the window with CreateWindowEx. This function looks scary doesn’t it?! So many parameters!! Don’t worry about it. It is really easy to remember and use. There is always MSDN to help you out.

hwnd = CreateWindowEx(

WS_EX_CLIENTEDGE,

name,

"My First Window",

WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT, CW_USEDEFAULT, 400, 400,

NULL, NULL, hInstance, NULL);

This function returns a handle to the window created. The first parameter to this function is an extended Windows Style. You can combine more than one with the | operator. More information on the whole function and more class styles can be found here:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/windows/windowreference/windowfunctions/createwindowex.asp
The second parameter is the Windows Class Structure to use to create the window. We will be using the one we just created.

The third Parameter is the Title of the window. This will be displayed in the blue title bar of the window.

The fourth parameter is the Windows Style, of the outer look of the window. Here you can specify if the window has a title bar, if it is resizable, minimize, maximize and close buttons. OVERLAPPEDWINDOW combines all of those.

The fifth parameter is the x position of the window. In windows everything is measured from the upper left hand corner. You can use CW_USEDEFAULT to let Windows choose the position.
The sixth parameter is the y position of the window. As stated above everything is in windows is measured from the upper left hand corner. If you specify 100 for that it will move it 100 pixels down from the upper left hand corner. It is the opposite of the normal graphing. Here y-axis grow as you go down, instead of go smaller and into negatives.

The seventh parameter is the x-axis size of the window. This parameter specifies how wide the window is going to be in pixels.

The eighth parameter is the y-axis size of the window. This parameter specifies how tall the window is going to be in pixels.

The ninth parameter is a handle to the parent window of this window. This window does not have a parent (some people might consider the desktop as the parent, but I don’t), so we put NULL for this one.

The tenth parameter is a handle to menu, if you have one. If you’ve specified a menu for the window class structure, you can leave this one as NULL.

The eleventh parameter is an instance handle of the window.

The twelfth parameter is a pointer to be passed to the Window Procedure for WM_CREATE to use. We won’t need this one; NULL.

 So far so good. We’ve created a Window Class Structure, initialized it, registered it, and we’ve created the window. But what use is a window if we cannot see it?! This shows the window and updates it.

ShowWindow(hwnd, nShowCmd);

UpdateWindow(hwnd);

The first function shows the window, and takes the window handle as the first parameter; the second parameter is passed to WinMain.

The second function sends a WM_PAINT message to the windows procedure.

Done? Don’t think so. We got a window that has all we need/want and we can see it. But what would happen if the user pushes the close button? Nothing. Now we have to take the messages send to our window by Windows, and depending on the message we do what we want.

Windows sends messages to our program’s queue, and they stay there until they are retrieved by the program, processed and dispatched. The loop which retrieves the messages processes them and dispatches them has to loop forever, unless the user wants to exit. When the user clicks the close button, a WM_CLOSE message is posted on the program’s message queue, once the program retrieves the message, it tells the Window its time to destroy. So a WM_DESTORY message is sent. WM_DESTORY post a “quite message”. This message’s value is 0. So then the condition is not met and the loop breaks. The next thing that happens is the program returns, and ends.
Message retrieving loop:

while(GetMessage(&Msg, NULL, 0, 0) > 0)

{

TranslateMessage(&Msg);

DispatchMessage(&Msg);

}

return (int)Msg.wParam;

The GetMessage function retrieves the messages from the message queue. If the message is 0, then it returns 0, and 0 is obviously not > 0. The loop breaks and the program exits. But if it is not a quit message, then it goes and Translates messages. Then they are dispatched to the window procedure we decide what to do.

The window procedure is just a function that we declared before WinMain and defined under WinMain. We never really directly call the Window Procedure. But the Window Class structure has a pointer to the Windows procedure. And Windows calls the procedure and passes the needed parameters to it. Then we decide what to do, depending on the message.

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)

{

switch(msg)

{

case WM_CLOSE:

DestroyWindow(hwnd);

break;

case WM_DESTROY:

PostQuitMessage(0);

break;

}

return DefWindowProc(hwnd, msg, wParam, lParam);

}

The first parameter that the window procedure takes is a handle to the window that called it. The second parameter is the message that Windows has sent to the program. The last two parameters that store more information about the message.
Inside the Windows Procedure we use a switch statement to check what message Windows has sent to the program. For right now we only need to know only about 2 messages. If WM_CLOSE is send to the window, we need to destroy it. And if WM_DESTORY is send to the window we need to quit out of the message loop.

WM_CLOSE and WM_DESTROY are the last places where you get the chance to delete any dynamically allocated memory.

There are thousands of messages that Windows might pass to the window procedure, it is not logical to write code for every single message out there. It will take a lot of code and time. So there is a really nice function, DefWindowProc which will process the messages we don’t. It is like our secondary window procedure.

This concludes everything about the simple structure of a window.

IV. Drawing Text and Paiting
Well a simple window is not of much use. It might just be more useless than the MessageBox.

In this section you will learn how to draw text and paint on the window’s client area.
This program draws “Hello World!” in the center of the client area, and a rectangle around it:

#include <windows.h>

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR szCmdLine, int nShowCmd)

{

static char name[] = "My Application";

WNDCLASSEX wc;

HWND hwnd;

MSG Msg;

//Step 1: Registering the Window Class

wc.cbSize

 = sizeof(WNDCLASSEX);

wc.style

 = CS_HREDRAW | CS_VREDRAW;

wc.lpfnWndProc
 = WndProc;

wc.cbClsExtra
 = 0;

wc.cbWndExtra
 = 0;

wc.hInstance
 = hInstance;

wc.hIcon

 = LoadIcon(NULL, IDI_APPLICATION);

wc.hCursor

 = LoadCursor(NULL, IDC_ARROW);

wc.hbrBackground = (HBRUSH) (COLOR_WINDOW+1);

wc.lpszMenuName = NULL;

wc.lpszClassName = name;

wc.hIconSm

 = LoadIcon(NULL, IDI_APPLICATION);

if(!RegisterClassEx(&wc))

{

MessageBox(NULL, "Window Registration Failed!", "Registration Failure",

MB_ICONEXCLAMATION | MB_OK);

return 0;

}

// Step 2: Creating the Window

hwnd = CreateWindowEx(

WS_EX_CLIENTEDGE,

name,

"My First Window",

WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT, CW_USEDEFAULT, 400, 400,

NULL, NULL, hInstance, NULL);

ShowWindow(hwnd, nShowCmd);

UpdateWindow(hwnd);

// Step 3: The Message Loop

while(GetMessage(&Msg, NULL, 0, 0) > 0)

{

TranslateMessage(&Msg);

DispatchMessage(&Msg);

}

return (int)Msg.wParam;

}

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)

{

HDC hdc;

PAINTSTRUCT ps;

RECT rect;

switch(msg)

{

case WM_PAINT:

hdc = BeginPaint(hwnd, &ps);

GetClientRect(hwnd, &rect);

Rectangle(hdc, rect.right / 2 - 50, rect.bottom / 2 - 20, rect.right / 2 + 50, rect.bottom / 2 + 20);

DrawText(hdc, "Hello World!", -1, &rect, DT_SINGLELINE | DT_CENTER | DT_VCENTER);

EndPaint(hwnd, &ps);

break;

case WM_CLOSE:

DestroyWindow(hwnd);

break;

case WM_DESTROY:

PostQuitMessage(0);

break;

}

return DefWindowProc(hwnd, msg, wParam, lParam);

}
First you might notice that we’ve added some variables in the window procedure, of types HDC, PAINTSTRUCT and RECT. The HDC is a handle to a device context, the device context identifies the window which the drawing to be done. It contains many “attributes” which tell the functions how to draw. The PAINSTRUCT contains information need to know where the client area is, how big it is, and other information need to be able to paint. And the RECT structure is a structure that stores the dimensions of a rectangle. With the function GetClientRect we can get the size of the client area.
To begin painting you need to obtain a handle to the device context. This is done so with the function BeginPaint. This function will return the device context, but it must only be used in WM_PAINT. If you are going to be doing any drawing outside of WM_PAINT, use GetDC. It works in the same basic way. And if you call BeginPaint you must Call EndPaint to release the device context. For GetDC, you have to call ReleaseDC.

The Rectangle function draws a rectangle. The first parameter is the Device context, the 2nd is the x stating position, the 3rd is the y starting position, the 4th is the x ending position, and the 5th is the y ending position. So you end up with 2 points. The 2nd and 3rd parameter make the 1st point, which is the upper left hand corner of the Rectangle. And the 4th and 5th parameters make the 2nd point which is the bottom right hand corner of the rectangle.
The DrawText function draws text on the client area of the window. The first parameter is the HDC (by the way, all drawing functions will require the HDC as their first parameter). The second parameter is the text to be drawn on the screen. The third parameter is the count of the characters to be drawn, if -1 is passed, the function will count them itself. And the last parameter specifies the way it should be drawn, we’ve specified that it should be a single line, and centered vertically and horizontally.
You can also draw text on the screen with the function TextOut. It works a bit differently though. Instead of passing it flags that tell it where to display the text, you actually specify the beginning point. First parameter is the HDC as usual then you pass the x coordinate for the 2nd parameter and the y coordinate for the 3rd parameter. 4th parameter is the string and 5th parameter is the length of the string. Unlike DrawText though you have to specify the size in bytes, -1 will not draw anything on the screen.
You can draw lines using 2 APIs. The first API is MoveToEx. This function sets the beginning point of the line. The second API is LineTo. This function draws a line from the previously set point by MoveToEx or LineTo, to the new point (at the end LineTo calls MoveToEx and changes the beginning point). These are obvious so I won’t explain them.

The way you change the color of the drawing functions is using pens and Brushes. For text you use SetBkColor and SetTextColor, I am not going to explain them, they are obvious.

Pens define the thickness and the color of the lines of shapes, and brushes define the color of the inside of the drawn shape (lines don’t have inside filling, so they are only affected by pens).

Change your WM_PAINT message handling to this:

hPen = CreatePen(BS_SOLID, 2, RGB(255, 0, 0));//Defined HPEN hPen

hBrush = CreateSolidBrush(RGB(0, 255, 0));//Defined HBRUSH hBrush

hdc = BeginPaint(hwnd, &ps);//Begin Painting

SelectObject(hdc, hPen);//Load the pen into the DC

SelectObject(hdc, hBrush);//Load the brush into the DC

Rectangle(hdc, 50, 50, 200, 100);//Make a rectangle, will use the brush and the pen

MoveToEx(hdc, 50, 100, NULL);//Set beginning point at (50,100)

LineTo(hdc, 70, 60);//Make a line from (50, 100) to (70, 60)

LineTo(hdc, 90, 85);//Make a line from (70, 60) to (90, 85)

LineTo(hdc, 110, 55);//Make a line from (90, 85) to (110, 55)

LineTo(hdc, 120, 60);//Make a line from (110, 55) to (120, 60)

LineTo(hdc, 140, 95);//Make a line from (120, 60) to (140, 95)

LineTo(hdc, 180, 53);//Make a line from (140, 95 to (180, 53)

SetTextColor(hdc, RGB(0, 0, 255));//Set the Text color

TextOut(hdc, 95, 110, "A Graph", 7);//Draw the text

EndPaint(hwnd, &ps);End painting
*Make sure you declare the pen and the brush!! HPEN and HBRUSH

The first thing I did was to create a 2 pixel, solid, red pen, and a solid green brush. Then I began the painting. The brush and the pen won’t take effect unless you tell the DC to use them. You do so by using the function SelectObject. This function selects all kinds of objects into the DC. But for right now we need it to select the new brush and pen. Now that we’ve selected the brush and pen, we are ready to begin drawing. What I drew is a rectangle between the points (50, 50) and (200, 100) just because I like the size of it, and it’s easy to deal with numbers. Then I moved the beginning point to (50, 100) (where the bottom left hand corner of the rectangle is). Then I drew a few lines creating something that looks like a graph.
Then I set the text color to blue with the function SetTextColor. Then finally drew the text, with the first letter beginning at (95, 100). And I ended the painting.

Play around with the brushes, pens, and drawing until you get the hang of it.

This covers the drawing and painting section.

V. Controls

Now what is a program without any buttons, edit controls and lists? Probably a not very useful one.

Buttons and other controls are generally useful and easy to use, unless you have a lot of them, then it all gets messy and confusing (an example of this can be found on my website http://martin.thejefffiles.com under the download section Martin’s Paint). In Martin’s Paint I used to many buttons it latterly became painful. Something I could’ve done to make it all easier and better is to use a drop down list box (wasn’t thinking right back then). It is a nice challenge to create program that will draw lines from user clicks (a nice challenge, look at the bottom to learn more about how to take keyboard key presses and mouse button presses).

Now let’s get down to business. A control really is a child window of the main window. A child window is a window that is connected to the main. In the controls we’ll be learning about the window will be sending its messages to the main window’s procedure, under a WM_COMMAND message.
How to create a control:

A control is easily created with the function CreateWindowEx. Just like a window is created. Except it’s a special kind of window. For this exercise well have add a close button near the bottom of the window.

Generally controls are initialized when the program begins under the WM_CREATE message. This message is the first message sent to the window procedure, there you can perform any actions you want, before the application is displayed to the user.

//hCloseBTN is a global variable defined like this:

//HWND hCloseBTN

//BUTTON_CLOSE defined like this in global scope

//#define BUTTON_CLOSE

40000
case WM_CREATE:

hCloseBTN = CreateWindowEx(WS_EX_WINDOWEDGE, "BUTTON", "Close", WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON, 0, 0, 0, 0, hwnd, NULL, GetModuleHandle(NULL), NULL);

//Notice for the Class Name we used BUTTON, it is predefined for us

//WS_CHILD makes it a child window, and then for the 9th parameter we

//pass the parent of the button

//GetModuleHanlde(NULL) gets the instance handle which is passed to

//main (HINSTANCE hInstance)

//I’ve created the button 0px tall and 0px wide because I will handle

//its size and position in WM_SIZE which is also sent when the program

//is initializing

break;

case WM_SIZE:

GetClientRect(hwnd, &rect);

SetWindowPos(hCloseBTN, NULL, rect.right / 2 - 50,
rect.bottom - 35, 100, 25, SWP_NOZORDER);

//I change the size and possition of the button with

//SetWindowPos but to get the right position I need

//to know how large is the client area so I get the

//Client rectangle with GetClientRect

break;

Buttons and other controls are initialized with CreateWindow or CreateWindowEx. I like to use CreateWindowEx. There is a predefined class for buttons already so for the class parameter we will use it “BUTTON”. And then we want it to say “Close” which is its title. We specify that we want the button to be a CHILD, VISIBLE, and to be a Push Button. There are other types of buttons such as checkbox and radio buttons. This time the button has a parent and we pass a handle to the window that is its parent as 9th parameter. The handle to the window is passed to the window procedure as the first argument. I’ve specified its size to be 0px tall and wide, because I’ll be dealing with position and size in the WM_SIZE message. WM_SIZE message is sent to the window every time the user changes the size of the window. Using GetClientRect I get the size of the client area and use the size to place the button and initialize its size. SetWindowPos is a useful API to change the size and position of the control. It takes the handle to the control as the first parameter the x coordinate for the position as 3rd parameter and y coordinate for the position as 4th parameter. The fifth parameter specifies how wide is should be and the sixth parameter specifies the height. The last on is flag, don’t worry about it for now.
Ok we got the button but, it doesn’t do anything. That’s no more useful than it was before.

There is quite a few ways to handle input from the button. Here is one way:

case WM_COMMAND:

switch(LOWORD(wParam))//Lo-order of wParam

{

case BN_CLICKED://If its clicked, that’s all we care about

if(hCloseBTN == (HWND)lParam)//Make sure it’s the right btn

{

PostQuitMessage(0);//Close the program

}

}

break;

This is one way to handle the button’s messages. The button sends a WM_COMMAND message to the parent, and lo-order of the wParam it sends the message. The lParam is the handle to the control that sent the message.
If you’ve lost me so far here is the whole code:

#include <windows.h>

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

HWND hCloseBTN;

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR szCmdLine, int nShowCmd)

{

static char name[] = "My Application";

WNDCLASSEX wc;

HWND hwnd;

MSG Msg;

//Step 1: Registering the Window Class

wc.cbSize

 = sizeof(WNDCLASSEX);

wc.style

 = CS_HREDRAW | CS_VREDRAW;

wc.lpfnWndProc
 = WndProc;

wc.cbClsExtra
 = 0;

wc.cbWndExtra
 = 0;

wc.hInstance
 = hInstance;

wc.hIcon

 = LoadIcon(NULL, IDI_APPLICATION);

wc.hCursor

 = LoadCursor(NULL, IDC_ARROW);

wc.hbrBackground = (HBRUSH) (COLOR_WINDOW+1);

wc.lpszMenuName = NULL;

wc.lpszClassName = name;

wc.hIconSm

 = LoadIcon(NULL, IDI_APPLICATION);

if(!RegisterClassEx(&wc))

{

MessageBox(NULL, "Window Registration Failed!", "Registration Failure",

MB_ICONEXCLAMATION | MB_OK);

return 0;

}

// Step 2: Creating the Window

hwnd = CreateWindowEx(

WS_EX_CLIENTEDGE,

name,

"My First Window",

WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT, CW_USEDEFAULT, 400, 400,

NULL, NULL, hInstance, NULL);

ShowWindow(hwnd, nShowCmd);

UpdateWindow(hwnd);

// Step 3: The Message Loop

while(GetMessage(&Msg, NULL, 0, 0) > 0)

{

TranslateMessage(&Msg);

DispatchMessage(&Msg);

}

return (int)Msg.wParam;

}

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)

{

HDC hdc;

PAINTSTRUCT ps;

RECT rect;

switch(msg)

{

case WM_CREATE:

hCloseBTN = CreateWindowEx(WS_EX_WINDOWEDGE, "BUTTON", "Close", WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,

0, 0, 0, 0, hwnd, NULL, GetModuleHandle(NULL), NULL);

break;

case WM_SIZE:

GetClientRect(hwnd, &rect);//Get size of client area

SetWindowPos(hCloseBTN, NULL, rect.right / 2 - 50, rect.bottom - 35, 100, 25, SWP_NOZORDER);//Set position and size of

//button

break;

case WM_PAINT:

hdc = BeginPaint(hwnd, &ps);

//Nothing is needed to be painted

EndPaint(hwnd, &ps);

break;

case WM_COMMAND:

//Handling the messages from menus, child windows, etc.

switch(LOWORD(wParam))

{

case BN_CLICKED://Checking messages, if a button has been

//clicked this message arives

if(hCloseBTN == (HWND)lParam)//Check which button has

//been clicked

{

PostQuitMessage(0);//If close button is clicked

//Close out

}

}

break;

case WM_CLOSE:
//If the program is closed

DestroyWindow(hwnd);

break;

case WM_DESTROY:

PostQuitMessage(0);

break;

}

return DefWindowProc(hwnd, msg, wParam, lParam);

}

Creating an edit control is basically the same. You use CreateWindowEx, the only difference is in the Class and the style. Here is how you create it.

hEdit = CreateWindowEx(WS_EX_WINDOWEDGE, "EDIT", "Type Here", WS_CHILD | WS_VISIBLE | ES_MULTILINE | WS_HSCROLL | WS_VSCROLL
| ES_AUTOHSCROLL | ES_AUTOVSCROLL, 0, 0, 0, 0, hwnd, NULL,
GetModuleHandle(NULL), NULL);

This time there is a lot more styles. This is because I created a multi-line (an edit that you can press enter and start a new line) edit control that has horizontal and vertical scroll bars, it also scrolls automatically for you as you are typing so you don’t have to move the scrollbar down every time you run out of visual space. Again we created the edit control to be 0pxl tall and 0pxl wide, well again be handling the size and position in the WM_SIZE message:

SetWindowPos(hEdit, NULL, 0, 0, rect.right, rect.bottom - 50, SWP_NOZORDER);

You are most likely not going to take messages directly from the edit control, since it does not send many messages to the parent and most of them are never used.

But lets say you want to take the w/e is in the edit control and save it to a file or do whatever you want with the string in the edit control. You do so by using a few APIs.

First you mare most likely going to need how many characters there are in the string so you can allocate the proper amount of space for it. You do so like this:

int len = GetWindowTextLength(hEdit);

The API GetWindowTextLength gets the length of the window’s title, in this case the string in the edit control is the title. Then you can allocate enough space for the string properly. One of my favorite ways of allocating space is:
char *buff = (char*)GlobalAlloc(GPTR, len+1);

This is a very easy way to allocate the space need and you free the space with GlobalFree.

GlobalFree((HANDLE)buff);

This way you don’t cause memory leaks. Now that you have allocated enough space for the string, its time to get the string. Guessed the function yet?

GetWindowText(hEdit, buff, len+1);

If you guessed wrong, it’s ok. This function stores the string right into buff. That is as easy at it gets.

Here is an example how this all comes together. This program takes the string form the edit control and makes a message box with it, every time the user pushes the button.

#include <windows.h>

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

HWND hMsgBoxBTN;

HWND hEdit;

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR szCmdLine, int nShowCmd)

{

static char name[] = "My Application";

WNDCLASSEX wc;

HWND hwnd;

MSG Msg;

//Step 1: Registering the Window Class

wc.cbSize

 = sizeof(WNDCLASSEX);

wc.style

 = CS_HREDRAW | CS_VREDRAW;

wc.lpfnWndProc
 = WndProc;

wc.cbClsExtra
 = 0;

wc.cbWndExtra
 = 0;

wc.hInstance
 = hInstance;

wc.hIcon

 = LoadIcon(NULL, IDI_APPLICATION);

wc.hCursor

 = LoadCursor(NULL, IDC_ARROW);

wc.hbrBackground = (HBRUSH) (COLOR_WINDOW+1);

wc.lpszMenuName = NULL;

wc.lpszClassName = name;

wc.hIconSm

 = LoadIcon(NULL, IDI_APPLICATION);

if(!RegisterClassEx(&wc))

{

MessageBox(NULL, "Window Registration Failed!", "Registration Failure",

MB_ICONEXCLAMATION | MB_OK);

return 0;

}

// Step 2: Creating the Window

hwnd = CreateWindowEx(

WS_EX_CLIENTEDGE,

name,

"My First Window",

WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT, CW_USEDEFAULT, 400, 400,

NULL, NULL, hInstance, NULL);

ShowWindow(hwnd, nShowCmd);

UpdateWindow(hwnd);

// Step 3: The Message Loop

while(GetMessage(&Msg, NULL, 0, 0) > 0)

{

TranslateMessage(&Msg);

DispatchMessage(&Msg);

}

return (int)Msg.wParam;

}

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)

{

HDC hdc;

PAINTSTRUCT ps;

RECT rect;

switch(msg)

{

case WM_CREATE:

hMsgBoxBTN = CreateWindowEx(WS_EX_WINDOWEDGE, "BUTTON", "MSG Box", WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,

0, 0, 0, 0, hwnd, NULL, GetModuleHandle(NULL), NULL);

hEdit = CreateWindowEx(WS_EX_WINDOWEDGE, "EDIT", "Type Here", WS_CHILD | WS_VISIBLE|

ES_MULTILINE | WS_HSCROLL | WS_VSCROLL | ES_AUTOHSCROLL | ES_AUTOVSCROLL,

0, 0, 0, 0, hwnd, NULL, GetModuleHandle(NULL), NULL);

break;

case WM_SIZE:

GetClientRect(hwnd, &rect);

SetWindowPos(hMsgBoxBTN, NULL, rect.right / 2 - 50, rect.bottom - 35, 100, 25, SWP_NOZORDER);

SetWindowPos(hEdit, NULL, 0, 0, rect.right, rect.bottom - 50, SWP_NOZORDER);

break;

case WM_PAINT:

hdc = BeginPaint(hwnd, &ps);

EndPaint(hwnd, &ps);

break;

case WM_COMMAND:

switch(LOWORD(wParam))

{

case BN_CLICKED:

if(hMsgBoxBTN == (HWND)lParam)

{

int len = GetWindowTextLength(hEdit);

char *buff = (char*)GlobalAlloc(GPTR, len+1);

GetWindowText(hEdit, buff, len+1);

MessageBox(hwnd, buff, "Message", MB_OK);

GlobalFree((HANDLE)buff);

}

}

break;

case WM_CLOSE:

DestroyWindow(hwnd);

break;

case WM_DESTROY:

PostQuitMessage(0);

break;

}

return DefWindowProc(hwnd, msg, wParam, lParam);

}

As you see the program does everything when the button is pushed. By now you’ve probably got a hang of how controls work. You can look up notification / messages and other reference information about all controls here:

http://msdn.microsoft.com/library/?url=/library/en-us/shellcc/platform/commctls/indivcontrol.asp
Something I forgot to mention through the whole tutorial is how to handle keyboard and mouse messages.

They are like every other message:

WM_LBUTTONDONW – Left button has been pushed LOWORD(lParam) x coordinate HIWORD(lParam) y coordinate.

WM_RBUTTONDOWN – Right button has been pushed LOWORD(lParam) x coordinate HIWORD(lParama) y coordinate

WM_LBUTTONDBLCLK – Left button has been double clicked x-y coordinates as above

WM_RBUTTONDBLCLK – Right button has been double clicked x-y coordinates as above

WM_MBUTTONDOWN – Middle mouse button has been clicked x-y coordinates as above

WM_MBUTTONDOWNDDBLCLK – Middle mouse button has been double clicked x-y coordinates as above.

WM_CHAR– A key as been pushed lParam specifies the character code wParam specifies the repeat count if it was pushed down and hold down.

That’s it for now! Depends on how this tutorial does, I may do another one.
Thank you.

Visit my webpage:

http://martin.thejefffiles.com
Contact me here:

expertmarksman@gmail.com
AIM: programmer4life
